ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ゲートターンオフサイリスタとコンデンサ

ショートカット: 違い類似点ジャカード類似性係数参考文献

ゲートターンオフサイリスタとコンデンサの違い

ゲートターンオフサイリスタ vs. コンデンサ

GTOの回路図記号 ゲートターンオフサイリスタ(Gate Turn-Off thyristor:GTO)は、自己消弧素子の一種で、ゲートに逆方向の電流を流すことにより、ターンオフできる機能をもつサイリスタである。. ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

ゲートターンオフサイリスタとコンデンサ間の類似点

ゲートターンオフサイリスタとコンデンサは(ユニオンペディアに)共通で6ものを持っています: ダイオード電圧電荷担体電極電流抵抗器

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

ゲートターンオフサイリスタとダイオード · コンデンサとダイオード · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

ゲートターンオフサイリスタと電圧 · コンデンサと電圧 · 続きを見る »

電荷担体

電荷担体または電荷キャリア(charge carrier)とは、物理学において電荷を運ぶ自由な粒子を指し、特に電気伝導体における電流を担う粒子を指す。例えば、電子やイオンがある。 金属では、伝導電子が電荷担体となる。各原子の外側の1個または2個の価電子は金属の結晶構造の中を自由に移動できる。この自由電子の雲をフェルミ気体という。 塩水のような電解液では、陽イオンと陰イオンが電荷担体となる。同様にイオン性固体が融解した液体においても、陽イオンと陰イオンが電荷担体となる(例えば、ホール・エルー法を参照)。 電弧のようなプラズマでは、電子とイオン化した気体の陽イオン、さらには電極が蒸発した素材などが電荷担体となる。電極の気化は真空でも起きるが、電弧は真空中では存在しえない。その場合は気化した電極が低圧の気体となって電弧を生じるための電荷担体となっている。 真空管などの真空中では、自由電子が電荷担体となる。 半導体では、伝導電子と正孔(ホール)が電荷担体となる。正孔とは価電子帯の空席になっている部分を粒子のように移動するものと捉えた見方であり、正の電荷を担う。N型半導体では伝導電子、P型半導体では正孔が電荷担体(多数キャリア)となる。pn接合にみられる空乏層には電荷担体はほとんどない。.

ゲートターンオフサイリスタと電荷担体 · コンデンサと電荷担体 · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

ゲートターンオフサイリスタと電極 · コンデンサと電極 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

ゲートターンオフサイリスタと電流 · コンデンサと電流 · 続きを見る »

抵抗器

抵抗器(ていこうき、resistor)とは、一定の電気抵抗値を得る目的で使用される電子部品であり受動素子である。通常は「抵抗」と呼ばれることが多い。 電気回路用部品として、電流の制限や、電圧の分圧、時定数回路などの用途に用いられる。集積回路など半導体素子の内部にも抵抗素子が形成されているが、この項では独立した回路部品としての抵抗器について述べる。.

ゲートターンオフサイリスタと抵抗器 · コンデンサと抵抗器 · 続きを見る »

上記のリストは以下の質問に答えます

ゲートターンオフサイリスタとコンデンサの間の比較

コンデンサが175を有しているゲートターンオフサイリスタは、24の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は3.02%です = 6 / (24 + 175)。

参考文献

この記事では、ゲートターンオフサイリスタとコンデンサとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »