ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

グルカゴン

索引 グルカゴン

ルカゴンの構造 グルカゴン (glucagon) は29アミノ酸残基からなるペプチドホルモンで、炭水化物の代謝に重要な機能を持つ。分子量3,485。インスリンとともに血糖値を一定に保つ作用をするホルモンであり、インスリンとは反対に血糖値が下がって糖を必要とするようになったときに肝細胞に作用してグリコーゲンの分解を促進する。Kimball と Murlin によって膵臓の抽出物から1923年に発見された。グルカゴンは主に膵臓のランゲルハンス島のA細胞(α細胞)で生合成、分泌される。膵臓のほかにも消化管から分泌される。膵外グルカゴンは腸管グルカゴンとも呼ばれる。なかでも胃底部に最も多く分布する。発見者は小野一幸。.

35 関係: 交感神経系代謝ペプチドホルモンランゲルハンス島リパーゼプロテインキナーゼホルモン分子量アミノ酸アルギニンアデニル酸シクラーゼインスリンガストリングリコーゲングリコーゲンホスホリラーゼグルコースケトン体コレシストキニンセクレチンソマトスタチンサイロキシン糖質コルチコイド糖新生炭水化物血糖値高血糖症迷走神経胃底肝細胞脳下垂体脂肪細胞脂肪酸膵臓成長ホルモン

交感神経系

交感神経系(こうかんしんけいけい、sympathetic nervous system, SNS、pars sympathica divisionis)は、自律神経系の一つ。「闘争と逃走の神経(英語ではFight and Flight)」などとも呼ばれるように、激しい活動を行っている時に活性化する。.

新しい!!: グルカゴンと交感神経系 · 続きを見る »

代謝

代謝(たいしゃ、metabolism)とは、生命の維持のために有機体が行う、外界から取り入れた無機物や有機化合物を素材として行う一連の合成や化学反応のことであり、新陳代謝の略称である生化学辞典第2版、p.776-777 【代謝】。これらの経路によって有機体はその成長と生殖を可能にし、その体系を維持している。代謝は大きく異化 (catabolism) と同化 (anabolism) の2つに区分される。異化は物質を分解することによってエネルギーを得る過程であり、例えば細胞呼吸がある。同化はエネルギーを使って物質を合成する過程であり、例えばタンパク質・核酸・多糖・脂質の合成がある。 代謝の化学反応は代謝経路によって体系づけられ、1つの化学物質は他の化学物質から酵素によって変換される。酵素は触媒として、熱力学的に不利な反応を有利に進めるため極めて重要な存在である。また、酵素は、細胞の環境もしくは他の細胞からの信号(シグナル伝達)の変化に反応することにより代謝経路の調節も行う。 有機体の代謝はその物質の栄養価の高さがどれだけか、また、毒性の高さがどれだけかを決定する。例えば、いくつかの原核生物は硫化水素を使って栄養を得ているが、この気体は動物にとっては毒であることが知られている。また、代謝速度はその有機体がどれだけの食物を必要としているかに影響を与える。.

新しい!!: グルカゴンと代謝 · 続きを見る »

ペプチドホルモン

ペプチドホルモン (peptide hormone) またはペプチド型ホルモンは、血流へ分泌され、内分泌機能を持っているペプチド類である。他のタンパク質のように、細胞の核内のDNAの鋳型から作られるmRNAの鋳型によって、ペプチドホルモンはアミノ酸を組み合わせて作られる。次に、ペプチドホルモン先駆体(プレ・プロホルモン)はいくつかの段階で処理され、通常、小胞体では、N末端シグナル配列の取り外しや時に糖鎖付加が行われて、プロホルモンが結果として出来る。 これらのプロホルモンはしばしば活性型の形状へホルモン分子を直接折り畳むことの指示に必要な余計なアミノ酸残基を含んでいるが、ホルモンが折り畳む機能は持っていない。 それが血流に放出される直前に細胞の中の特定のエンドペプチダーゼはプロホルモンを分割して、分子の成熟したホルモン型を生成する。そして、成熟したペプチドホルモンは血液を通し体の細胞のすべてに拡散、それらの標的細胞の表面で固有の受容体と相互作用する。.

新しい!!: グルカゴンとペプチドホルモン · 続きを見る »

ランゲルハンス島

ランゲルハンス島(ランゲルハンスとう、islets of Langerhans)は、膵臓の内部に島の形状で散在する内分泌を営む細胞群である。膵島(すいとう、Pancreatic islets、insulae pancreaticae)とも呼ばれる。ドイツの病理学者のパウル・ランゲルハンスによって発見された。.

新しい!!: グルカゴンとランゲルハンス島 · 続きを見る »

リパーゼ

リパーゼ (lipase) は、脂質を構成するエステル結合を加水分解する酵素群である。語源は、ギリシャ語の“lipos(脂肪)”+“ase(酵素)”に由来する。普通はそのうちで特にトリグリセリド(グリセロールの脂肪酸エステル)を分解して脂肪酸を遊離するトリアシルグリセリドリパーゼ(EC 3.1.1.3)を指す。消化液(胃液、膵液)に含まれ、脂質の消化を行う消化酵素であり、多くの生物の細胞で脂質の代謝に関与する。 リパーゼはすべての生物に存在し、その遺伝子は一部のウイルスにもある。機能も立体構造もさまざまであるが、活性中心にセリン(求核性の酸素原子を持つ)と酸性アミノ酸残基(アスパラギン酸など)およびヒスチジンを持つタイプが多い。 基質のグリセロール骨格の特定の位置(3か所のいずれか)を分解するものが多い。また逆反応(エステル合成)にも働くことから、人工的なエステル合成・交換反応にも用いられている。その際、目的とするエステルの加水分解を避けるため、有機溶媒中で反応が実施されることもある。また、リパーゼのその他の利用用途として消化薬、あるいは洗剤などに添加される。 広義のリパーゼとしては、リン脂質(生体膜の主成分)を分解する各種のホスホリパーゼがある。これらはエイコサノイド(プロスタグランジンなど)の合成や、細胞内でのシグナル伝達といった、細胞内外での機能調節に関与する。 Category:酵素.

新しい!!: グルカゴンとリパーゼ · 続きを見る »

プロテインキナーゼ

プロテインキナーゼ (Protein kinase; プロテインカイネース) は、タンパク質分子にリン酸基を付加する(リン酸化する)酵素である。タンパク質キナーゼあるいは英語風にプロテインカイネースとも呼ぶ。キナーゼ(リン酸基転移酵素)の中でタンパク質をリン酸化するキナーゼをプロテインキナーゼと呼ぶが、このプロテインキナーゼのことを特にキナーゼと呼ぶことが多い(本記事では以後単にキナーゼという)。.

新しい!!: グルカゴンとプロテインキナーゼ · 続きを見る »

ホルモン

ホルモン(Hormon、hormone)は、狭義には生体の外部や内部に起こった情報に対応し、体内において特定の器官で合成・分泌され、血液など体液を通して体内を循環し、別の決まった細胞でその効果を発揮する生理活性物質を指す生化学辞典第2版、p.1285 【ホルモン】。ホルモンが伝える情報は生体中の機能を発現させ、恒常性を維持するなど、生物の正常な状態を支え、都合よい状態にする生化学辞典第2版、p.1285 【ホルモン作用】重要な役割を果たす。ただし、ホルモンの作用については未だわかっていない事が多い。.

新しい!!: グルカゴンとホルモン · 続きを見る »

分子量

分子量(ぶんしりょう、)または相対分子質量(そうたいぶんししつりょう、)とは、物質1分子の質量の統一原子質量単位(静止して基底状態にある自由な炭素12 (12C) 原子の質量の1/12)に対する比であり、分子中に含まれる原子量の総和に等しい。 本来、核種組成の値によって変化する無名数である。しかし、特に断らない限り、天然の核種組成を持つと了解され、その場合には、構成元素の天然の核種組成に基づいた相対原子質量(原子量)を用いて算出される。.

新しい!!: グルカゴンと分子量 · 続きを見る »

アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。.

新しい!!: グルカゴンとアミノ酸 · 続きを見る »

アルギニン

アルギニン (arginine) は天然に存在するアミノ酸のひとつ。2-アミノ-5-グアニジノペンタン酸(2-アミノ-5-グアニジノ吉草酸)のこと。略号は R あるいは Arg。示性式 H2NC(.

新しい!!: グルカゴンとアルギニン · 続きを見る »

アデニル酸シクラーゼ

アデニル酸シクラーゼ(アデニリルシクラーゼとも。英: adenylate cyclase; アデニレートサイクレース、; )はATPを3',5'-環状AMP (cAMP) とピロリン酸への変換を触媒する酵素、リアーゼである。cAMPはセカンドメッセンジャーと呼ばれる、真核生物のシグナル伝達に重要な分子である。アデニル酸シクラーゼは、膜受容体に結合してホルモンや他の刺激に反応するGタンパク質を活性化または抑制することができる。9種類のアデニル酸シクラーゼが哺乳類で知られている。.

新しい!!: グルカゴンとアデニル酸シクラーゼ · 続きを見る »

インスリン

インスリンの分子構造 インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。 生理作用としては、主として血糖を抑制する作用を有する。インスリンは脂肪組織や骨格筋を中心に存在するグルコーストランスポーターの一種であるGLUT4に作用し、そこから血中のグルコースを取り込ませることによって血糖値を下げる重要な役割を持つ。また骨格筋におけるアミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。 インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。 従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。.

新しい!!: グルカゴンとインスリン · 続きを見る »

ガストリン

トリン()は、主に胃の幽門前庭部に存在するG細胞から分泌されるホルモン。胃主細胞からのペプシノゲン分泌促進作用、胃壁細胞からの胃酸分泌促進作用、胃壁細胞増殖作用、インスリン分泌促進作用などが認められている。ガストリン分泌はプログルミドやセクレチンなどによって抑制される。.

新しい!!: グルカゴンとガストリン · 続きを見る »

グリコーゲン

リコーゲンの構造 グリコーゲン (glycogen) あるいは糖原(とうげん)とは、多数のα-D-グルコース(ブドウ糖)分子がグリコシド結合によって重合し、枝分かれの非常に多い構造になった高分子である。動物における貯蔵多糖として知られ、動物デンプンとも呼ばれる。植物デンプンに含まれるアミロペクチンよりもはるかに分岐が多く、8~12残基に一回の分岐となる。直鎖部分の長さは12~18残基、分岐の先がさらに分岐し、網目構造をとる。英語の発音から「グライコジェン」と呼ばれることもある。 グリコーゲンは肝臓と骨格筋で主に合成され、余剰のグルコースを一時的に貯蔵しておく意義がある。糖分の貯蔵手段としてはほかに、脂肪とアミノ酸という形によるものがある。 脂肪酸という形でしかエネルギーを取り出せない脂肪や、合成分解に窒素代謝の必要なアミノ酸と違い、グリコーゲンは直接ブドウ糖に分解できるという利点がある。 ただし、脂肪ほど多くのエネルギーを貯蔵する目的には向かず、食後などの一時的な血糖過剰に対応している。 肝細胞は、食後直後に肝臓の重量の8 %(大人で100-120 g)までのグリコーゲンを蓄えることができる。本稿の「分解」の節で述べられているように肝臓に蓄えられたグリコーゲンのみが他の臓器でも利用することができる。骨格筋中ではグリコーゲンは骨格筋重量の1-2 %程度の低い濃度でしか貯蔵できない。筋肉は、体重比で成人男性の42%、同女性の36%を占める。このため体格等にもよるが大人で300g前後のグリコーゲンを蓄えることができる。 グリコーゲンの合成・分解は甲状腺、膵臓、副腎がそれぞれ血糖に応じてサイロキシン、グルカゴン及びインスリン、アドレナリンなどを分泌することで調整される。 なお、肝臓で合成されたグリコーゲンと骨格筋で合成されたそれとでは分子量が数倍異なり、前者のほうが大きい。.

新しい!!: グルカゴンとグリコーゲン · 続きを見る »

グリコーゲンホスホリラーゼ

リコーゲンホスホリラーゼ(はホスホリラーゼという酵素の一種である)。グリコーゲンホスホリラーゼは、動物におけるグリコーゲン分解の律速段階を触媒し、末端のα-1,4-グリコシド結合を切ってグルコース-1-リン酸を遊離させる。グリコーゲンホスホリラーゼは可逆的リン酸化とアロステリックな効果の両方のモデル酵素としても研究されている。.

新しい!!: グルカゴンとグリコーゲンホスホリラーゼ · 続きを見る »

グルコース

ルコース(glucose)は、分子式 C6H12O6を持つ単純な糖である。とも呼ばれる。グルコースは血糖として動物の血液中を循環している。糖は植物などに含まれる葉緑体において、太陽光からのエネルギーを使って水と二酸化炭素から光合成によって作られる。グルコースはのための最も重要なエネルギー源である。植物ではデンプン、動物ではグリコーゲンのようなポリマーとして貯蔵される。 グルコースは6個の炭素原子を含み、単糖の下位区分であるヘキソースに分類される。D-グルコースは16種類の立体異性体の一つである。D型異性体であるD-グルコースは、デキストロース(dextrose)とも呼ばれ、天然に広く存在するが、L-型異性体であるL-グルコースはそうではない。グルコースは乳糖や甘蔗糖、麦芽糖、セルロース、グリコーゲンなどといった炭水化物の加水分解によって得ることができる。グルコースは通常コーンスターチから商業的に製造されている。 グルコースは世界保健機関必須医薬品モデル・リストに入っている。Glucoseという名称は、甘いを意味するギリシア語γλυκός (glukós) 由来のフランス語から来ている。接尾辞の "-ose" は炭水化物を示す化学分類辞である。.

新しい!!: グルカゴンとグルコース · 続きを見る »

ケトン体

トン体(ケトンたい、Ketokörper、Corps cétoniques、Ketone bodies)とは、アセト酢酸、3-ヒドロキシ酪酸(β-ヒドロキシ酪酸)、アセトンの総称。脂肪酸ならびにアミノ酸の不完全代謝産物である。 一般に、解糖系やβ酸化で生産されたアセチルCoAは速やかにクエン酸回路により消費される。しかし、肝臓において過剰のアセチルCoAが産生されると、肝臓のミトコンドリア中でアセチルCoAは3-ヒドロキシ酪酸あるいはアセト酢酸に変換される。3-ヒドロキシ酪酸は酵素的にアセト酢酸に変換され、βケト酸であるアセト酢酸は不安定な物質で容易に非酵素的に脱炭酸してアセトンへと変化する。このようなケトン体が過剰な状態ではケトン血症やケトン尿症を引き起し、呼気中にアセトンが発せられ、尿中にケトン体が含まれるようになる。このような病状をケトーシスと呼ぶ。単胃動物ではケトン体は肝臓でのみ合成される。一方、反芻動物では消化器中の微生物の発酵による酪酸の過剰生成に伴って消化器でケトン体が生成される場合がある。 一般にケトーシスはグルコース代謝に異状をきたし、代償的にケトン体でエネルギー代謝を賄おうとして引き起こされる。例えば、重度の糖尿病患者では、β酸化の過度の亢進などにより肝臓からこれらのケトン体が大量に産生される。インスリンはグルコースの利用を促進するホルモンであるが、1型糖尿病患者ではインスリンが欠乏している。細胞内にグルコースを取り込む役割をするグルコーストランスポーターのGLUT4は、主に脂肪細胞、骨格筋、心筋に認められ、インスリンがないときには細胞内に沈んでいるが、インスリンを感知すると細胞膜上へと浮上してグルコースを細胞内に取り込む。このためインスリンが枯渇していると肝臓、筋肉といった組織がグルコーストランスポーターを介して血糖を細胞内に取り込むことが出来ず、体内に蓄積した脂肪酸をβ酸化することによりアセチルCoAを取り出し、TCAサイクルを回すことでエネルギーを調達する。このケトンによってアシドーシス(血液が酸性に傾く状態)となる。このようなケトンによるアシドーシスは特にケトアシドーシスと呼ばれ、特に糖尿病によって引き起こされた場合を糖尿病性ケトアシドーシスという。グルコースが枯渇しているような絶食時、激しい運動時、高脂肪食においてもケトン体が生成される。 脂肪酸は脳関門を通れないため、脳は通常、脳関門を通過できるグルコースをエネルギー源としている。絶食等によりグルコースが枯渇した場合、アセチルCoAから生成されたケトン体(アセト酢酸)もグルコースと同様に脳関門を通過でき、脳関門通過後に再度アセチルCoAに戻されて脳細胞のミトコンドリアのTCAサイクルでエネルギーとして利用される。なお、ケトン体のうちアセトンは最終代謝物なのでエネルギーに変換できない。ケトン体は骨格筋、心臓、腎臓などでもエネルギー源となるが、肝臓のミトコンドリアのクエン酸回路では酸化分解されずエネルギー源として利用されない。これは肝臓では酢酸からアセチルCoAの合成酵素のmRNAが全く発現していないためである - 薬学用語解説 - 日本薬学会。脳はグルコースを優先的にエネルギー源として利用するが、グルコースが少ない時にはケトン体が主たるエネルギー源となる。.

新しい!!: グルカゴンとケトン体 · 続きを見る »

コレシストキニン

レシストキニン・パンクレオザイミン (cholecystokinin(CCK)・PZ) は、消化管ホルモンの一つで、十二指腸や空腸のI細胞から分泌される。 33個のアミノ酸からなるペプチド (CCK-33) で、小腸のI細胞で作られる。十二指腸内のペプチド、アミノ酸、脂肪酸によって分泌が促進される。膵腺細胞のホスホリパーゼCを活性化させ、イノシトールトリスリン酸の増加により膵酵素を分泌させる。 「コレ」は胆汁、「シスト」はふくろ、「キニン」は動かすものを意味し、全体で「胆のうを収縮させるもの」という意味。.

新しい!!: グルカゴンとコレシストキニン · 続きを見る »

セクレチン

レチン (secretin) は小腸粘膜で合成され、膵臓からの重炭酸塩の外分泌を亢進させる消化管ホルモンである。塩酸を含むため酸性を帯びた粥状液が胃から送られてくることによって十二指腸の pH が低下すると分泌される。27個のアミノ酸からなるペプチドホルモンであり、そのうち14個はグルカゴンと同じ配列を持つ。 1902年、血液によって運搬されて生理学的効果を及ぼす基質として初めて同定された。この種の基質は「ホルモン」と名づけられ、セクレチンは最初に発見された1つとなった。ホルモンの語はウィリアム・ベイリス (William Bayliss) とアーネスト・スターリング (Ernest H. Starling) によって作り出され、この種の伝達物質を分類するのに用いられた。.

新しい!!: グルカゴンとセクレチン · 続きを見る »

ソマトスタチン

マトスタチン(somatostatin, SST)とは、脳の視床下部、膵臓のランゲルハンス島δ細胞(D細胞)、消化管の内分泌細胞(δ細胞)などから分泌され、内分泌系を制御し、G蛋白質共役を介してやに影響を与え、さらには多くの二次ホルモンの分泌を抑制するペプチドホルモンである。コレシストキニンなどにより、ソマトスタチンのD細胞からの分泌が促進される。ソマトスタチンは、ガストリン、セクレチン、インスリン、グルカゴンの分泌を抑制する。 ソマトスタチンには共通の前駆蛋白質(preproprotein)から切り出される2つの活性型がある。一つは14アミノ酸から成り、もう一つは28アミノ酸から成る。28アミノ酸型ソマトスタチンは14アミノ酸型のアミノ酸鎖を延長した形になっている。 脊椎動物では6つのソマトスタチン遺伝子が知られており、SS1〜SS6と呼ばれている。ゼブラフィッシュは6つの遺伝子を全て持つ。6つの遺伝子は5つのに対応し、ソマトスタチンの機能を多様なものにしている。ヒトにはソマトスタチン遺伝子は1つ(SST)しかない。.

新しい!!: グルカゴンとソマトスタチン · 続きを見る »

サイロキシン

イロキシンまたはチロキシン (Thyroxine) は甲状腺の濾胞から分泌される甲状腺ホルモンの一種であり、同じく甲状腺ホルモンであるトリヨードサイロニンの前駆体ともなる修飾アミノ酸で、T4と略記される。 サイロキシンは、その99.95%がサイロキシン結合タンパク質やアルブミンなどのタンパク質と結合した状態で血液中を運ばれる。血中での寿命はおよそ1週間である。 またサイロキシンは代謝量の制御に関わり、成長に影響を与えていることが示されている。 D型の異性体はデキストロサイロキシンと呼ばれ、脂質の改質に用いられている。.

新しい!!: グルカゴンとサイロキシン · 続きを見る »

糖(とう)とは、多価アルコールの最初の酸化生成物であり、アルデヒド基 (−CHO) またはケトン基 (>C.

新しい!!: グルカゴンと糖 · 続きを見る »

糖質コルチコイド

糖質コルチコイド(とうしつコルチコイド)は、副腎皮質の束状層で産生される、副腎皮質ホルモンの一つである。グルココルチコイド (glucocorticoid) とも言われる。.

新しい!!: グルカゴンと糖質コルチコイド · 続きを見る »

糖新生

糖新生(とうしんせい、gluconeogenesis)とは、飢餓状態に陥った動物が、グルカゴンの分泌をシグナルとして、ピルビン酸、乳酸、糖原性アミノ酸、プロピオン酸、グリセロールなどの糖質以外の物質から、グルコースを生産する手段・経路である。.

新しい!!: グルカゴンと糖新生 · 続きを見る »

炭水化物

物製品は炭水化物を多く含んでいる。 炭水化物(たんすいかぶつ、carbohydrates、Kohlenhydrate)または糖質(とうしつ、glucides、saccharides)は、単糖を構成成分とする有機化合物の総称である。非常に多様な種類があり、天然に存在する有機化合物の中で量が最も多い。有機栄養素のうち炭水化物、たんぱく質、脂肪は、多くの生物種で栄養素であり、「三大栄養素」とも呼ばれている。 栄養学上は炭水化物は糖質と食物繊維の総称として扱われており、消化酵素では分解できずエネルギー源にはなりにくい食物繊維を除いたものを糖質と呼んでいる。三大栄養素のひとつとして炭水化物の語を用いるときは、主に糖質を指す。 炭水化物の多くは分子式が CHO で表され、Cm(H2O)n と表すと炭素に水が結合した物質のように見えるため炭水化物と呼ばれ、かつては含水炭素とも呼ばれた生化学辞典第2版、p.908 【糖質】。 後に定義は拡大し、炭水化物は糖およびその誘導体や縮合体の総称となり、分子式 CmH2nOn で表されない炭水化物もある。そのような例としてデオキシリボース C5H10O4 、ポリアルコール、ケトン、酸などが挙げられる。また、分子式が CmH2nOn ではあっても、ホルムアルデヒド (CH2O, m.

新しい!!: グルカゴンと炭水化物 · 続きを見る »

血糖値

血糖値(けっとうち、blood sugar concentration / blood glucose level)とは、血液内のグルコース(ブドウ糖)の濃度である。健常なヒトの場合、空腹時血糖値はおおよそ80-100mg/dL程度であり、食後は若干高い値を示す。 ヒトの血糖値は、血糖値を下げるインスリン、血糖値をあげるグルカゴン、アドレナリン、コルチゾール、成長ホルモンといったホルモンにより、非常に狭い範囲の正常値に保たれている。体内におけるグルコースはエネルギー源として重要である反面、高濃度のグルコースは糖化反応を引き起こし微小血管に障害を与え生体に有害であるため、インスリンなどによりその濃度(血糖)が常に一定範囲に保たれている。.

新しい!!: グルカゴンと血糖値 · 続きを見る »

高血糖症

血糖症(こうけっとうしょう、)とは血中のグルコース濃度が過剰である状態。高血糖症は通常血糖値が10mmol/L(180mg/dL)以上からとされるが、15-20mmol/L(270-360mg/dL)あるいは15.2-32.6mmol/Lまで顕著な症状を示さないこともある。しかし125mg/dL以上の状態が慢性的に続くと臓器障害を生じうる。 英語の hyperglycemia の語源は、ギリシア語でhyper- 過度に、-glyc- 甘い、-emia 血液の状態、である。.

新しい!!: グルカゴンと高血糖症 · 続きを見る »

迷走神経

迷走神経(めいそうしんけい、英:Vagus nerve、羅:Nervus vagus)は、12対ある脳神経の一つであり、第X脳神経とも呼ばれる。頸部と胸部内臓、一部は腹部内臓に分布する。.

新しい!!: グルカゴンと迷走神経 · 続きを見る »

胃底

胃底(Fundus (stomach))とは、胃の左側に位置し、噴門から水平に線を引いた上方に位置する部分をいう。 上方に向けて丸みを帯びているので、胃の中でガスが発生するとこの部分にたまる。 胃の中での未消化物は1時間を上限としてここにたまる。 なお、胃底(または胃底部)と呼ばれるのは、胃の上部で噴門に近い部分のことで、この名は、胃の外科手術を行うとき、胃よりも下の部位から開腹するため、そこから見ると胃の中では一番奥に位置することから付けられた。胃底部は横隔膜に接する。中身がない状態では、内側の壁はひだを作り縮んでいる(容積は約50ミリリットル)が、食後に食べ物でふくらんだ状態のときは、腹部前面に張り出したのが感じられるぐらいに膨らむ(いわゆる「満腹」の状態では、容積は1.5から1.8リットル)。幽門は第1腰椎右側に位置する。.

新しい!!: グルカゴンと胃底 · 続きを見る »

肝細胞

肝細胞(かんさいぼう、Hepatocyte)は、肝臓を構成する70-80%を構成する約20μm大の細胞。肝細胞はタンパク質の合成と貯蔵、炭水化物の変換、コレステロール、胆汁酸、リン脂質の合成、並びに、内生および外生物質の解毒、変性、排出に関与する。また胆汁の生成と分泌を促進する働きも持つ。.

新しい!!: グルカゴンと肝細胞 · 続きを見る »

脳下垂体

脳下垂体(のうかすいたい)または下垂体(かすいたい)は、脊椎動物の体に存在する内分泌器官の1つである。脳に接して、脳の直下(腹側)に存在し、脳の一部がぶら下がっているように見えることからこの名がある。.

新しい!!: グルカゴンと脳下垂体 · 続きを見る »

脂肪細胞

脂肪細胞(しぼうさいぼう、adipocyte)は、細胞質内に脂肪滴を有する細胞のことである。単胞性脂肪細胞(白色脂肪細胞)と多胞性脂肪細胞(褐色脂肪細胞)とに分類される。単胞性脂肪細胞は大型の脂肪滴が存在し、核や細胞小器官が辺縁に圧迫されている貯蔵型の細胞であり、多胞性脂肪細胞は小型あるいは中型の脂肪滴が多数存在し、細胞小器官が発達している代謝型の細胞である。冬眠する動物では多胞性脂肪細胞を主体とする脂肪組織を冬眠腺と呼ぶ場合がある。近年、脂肪組織に多くの脂肪幹細胞が見出され、脂肪幹細胞移植など再生医療のセルソース(細胞源)として、その価値に注目が集まってきた。.

新しい!!: グルカゴンと脂肪細胞 · 続きを見る »

脂肪酸

脂肪酸(しぼうさん、Fatty acid)とは、長鎖炭化水素の1価のカルボン酸である。一般的に、炭素数2-4個のものを短鎖脂肪酸(低級脂肪酸)、5-12個のものを中鎖脂肪酸、12個以上のものを長鎖脂肪酸(高級脂肪酸)と呼ぶ。炭素数の区切りは諸説がある。脂肪酸は、一般式 CnHmCOOH で表せる。脂肪酸はグリセリンをエステル化して油脂を構成する。脂質の構成成分として利用される。 広義には油脂や蝋、脂質などの構成成分である有機酸を指すが、狭義には単に鎖状のモノカルボン酸を示す場合が多い。炭素数や二重結合数によって様々な呼称があり、鎖状のみならず分枝鎖を含む脂肪酸も見つかっている。また環状構造を持つ脂肪酸も見つかってきている。.

新しい!!: グルカゴンと脂肪酸 · 続きを見る »

膵臓

膵臓(すいぞう、pancreas)は、脊椎動物の器官のひとつで、膵液と呼ばれる消化酵素を含む液体を分泌し、それを消化管に送り込む外分泌腺である。 また、魚類以外の脊椎動物の膵臓の中には、ランゲルハンス島(らんげるはんすとう)と呼ばれる球状の小さな細胞の集塊が無数に散らばっている。ランゲルハンス島は、1個1個が微小な臓器と考えられ、インスリン、グルカゴンなどのホルモンを血液中に分泌する内分泌腺である。なお、魚類のランゲルハンス島は膵臓ではなく肝臓近辺に散在する。 したがって膵臓全体として見ると、両生類以上の脊椎動物の膵臓は、2つの機能を持つといえる。.

新しい!!: グルカゴンと膵臓 · 続きを見る »

成長ホルモン

成長ホルモン(せいちょうホルモン、growth hormone、GH)は脳下垂体前葉のGH分泌細胞から分泌されるホルモンである。ヒト成長ホルモンは特に hGH(human GH)と呼ぶ。.

新しい!!: グルカゴンと成長ホルモン · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »