ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

クラウジウス・クラペイロンの式

索引 クラウジウス・クラペイロンの式

ラウジウス・クラペイロンの式(クラウジウス-クラペイロンのしき、Clausius–Clapeyron equation)とは、物質がある温度で気液平衡の状態にあるときの蒸気圧と、蒸発に伴う体積の変化、及び蒸発熱を関係付ける式である。ルドルフ・クラウジウスとエミール・クラペイロンに因んで名付けられた。 物質が熱力学温度 で気液平衡の状態にあるとき、蒸気圧を とし、蒸発に伴う体積変化を 、蒸発エンタルピー(蒸発熱)を とすると の関係が成り立つ。 なお、この関係式は気液平衡以外にも、液体と固体の共存状態や、より一般の二相共存状態にも用いることが出来る。その場合は転移点における示強性状態量 やそれに共役な示量性状態量の変化 及び転移エンタルピー などに置き換えれば良い。.

29 関係: 定圧モル熱容量体積化学ポテンシャルモル体積ルドルフ・クラウジウストルートンの規則エミール・クラペイロンエンタルピーキルヒホッフの法則 (反応熱)ギブズ・デュエムの式ジュールの法則固体理想気体示量性と示強性熱力学的平衡熱力学的状態方程式熱力学温度物質量蒸発蒸発熱蒸気圧臨界温度自由エネルギー極限水蒸気気体定数気液平衡液体温度

定圧モル熱容量

定圧モル熱容量(ていあつモルねつようりょう、英語:molar heat capacity at constant pressure)とは定圧過程における1モル当たりの熱容量のことである。すなわち、圧力一定の条件のときに物質(特に気体について用いられる)を単位物質量あたり単位温度上昇させるのに必要な熱量を意味する。 定圧モル比熱(ていあつモルひねつ、英語:molar specific heat at constant pressure)とも呼ばれ、平成21年現在、日本の高等学校の「物理II」の教科書では「定圧モル比熱」と記述されている。.

新しい!!: クラウジウス・クラペイロンの式と定圧モル熱容量 · 続きを見る »

体積

体積(たいせき)とは、ある物体が 3 次元の空間でどれだけの場所を占めるかを表す度合いである。和語では嵩(かさ)という。.

新しい!!: クラウジウス・クラペイロンの式と体積 · 続きを見る »

化学ポテンシャル

化学ポテンシャル(かがくポテンシャル、)は熱力学で用いられる示強性状態量の一つである。 推奨される量記号は、μ(ミュー)である。 化学ポテンシャルはアメリカの化学者ウィラード・ギブズにより導入され、浸透圧や化学反応のようなマクロな物質量の移動が伴う現象で重要な量である。.

新しい!!: クラウジウス・クラペイロンの式と化学ポテンシャル · 続きを見る »

モル体積

モル体積とは単位物質量(1 mol)の原子または分子が標準状態で占める体積である。モル質量÷密度でも求められる。 気体分子のモル体積は気体の状態方程式で議論され、1 molの気体分子の体積は、気体の種類によらずほぼ一定である。気体の種類による違いは実在気体の状態方程式(ファンデルワールスの状態方程式など)の係数の違いになる。理想気体のモル体積Vm はその状態方程式より、種類によらず V_\mathrm&.

新しい!!: クラウジウス・クラペイロンの式とモル体積 · 続きを見る »

ルドルフ・クラウジウス

ルドルフ・ユリウス・エマヌエル・クラウジウス(Rudolf Julius Emmanuel Clausius, 1822年1月2日 - 1888年8月24日)は、ドイツの物理学者。熱力学第一法則・第二法則の定式化、エントロピーの概念の導入など、熱力学の重要な基礎を築いた。.

新しい!!: クラウジウス・クラペイロンの式とルドルフ・クラウジウス · 続きを見る »

トルートンの規則

トルートンの規則(トルートンのきそく、)とは液体の蒸発熱と沸点の間に成り立つ法則のことである。1884年、アイルランドの物理学者であるが発見した。 液体の蒸発熱( 当たりの蒸発エンタルピー)、沸点を絶対温度で表した値 とすると、 となるというものである。 沸点においては気相と液相が平衡にあるから、 当たりの蒸発ギブズエネルギー は 0 である。すなわち、 当たりの蒸発エントロピーを とすると、ギブズエネルギーの定義 より、 であるから、トルートンの規則は液体の種類によらず蒸発モルエントロピーが と一定の値を示すことを意味している。 しかし、水や低分子量のアルコール、カルボン酸などのように強く水素結合している液体ではそれによって秩序だった構造が存在するため液体のエントロピーが低く、そのような秩序がない気相への相転移には余分にエントロピーの増加が必要となる。またメタンのように慣性モーメントの小さい分子では回転運動のエネルギー準位の間隔が広いために気体のエントロピーが低く、気相への相転移のエントロピーの増加は普通の液体に比べて少なくてよい。このような種類の液体はトルートンの規則が成立しない例外となる。.

新しい!!: クラウジウス・クラペイロンの式とトルートンの規則 · 続きを見る »

エミール・クラペイロン

ブノワ・ポール・エミール・クラペイロン(Benoît Paul Émile Clapeyron、1799年2月26日 - 1864年1月28日)はフランスの物理学者、工学者。パリ出身。蒸気機関の設計に従事し、カロリック説の信奉者であったが、熱力学でクラウジウス-クラペイロンの式を発見するなどの業績を残した。 パリのエコール・ポリテクニークで、カルノー(1796-1832)と同時期に学生であった。1834年カルノーの考え方を発展させた論文を書いた。(カルノーは1832年に病死している。)可逆過程の概念を導入するなど、カルノーの考え方を数学的に定式化して発展させた。1844年からパリで国立土木学校で機械工学と力学の教授を務めた。.

新しい!!: クラウジウス・クラペイロンの式とエミール・クラペイロン · 続きを見る »

エンタルピー

ンタルピー()とは、熱力学における示量性状態量のひとつである。熱含量()とも。エンタルピーはエネルギーの次元をもち、物質の発熱・吸熱挙動にかかわる状態量である。等圧条件下にある系が発熱して外部に熱を出すとエンタルピーが下がり、吸熱して外部より熱を受け取るとエンタルピーが上がる。 名称が似ているエントロピー()とは全く異なる物理量である。.

新しい!!: クラウジウス・クラペイロンの式とエンタルピー · 続きを見る »

キルヒホッフの法則 (反応熱)

熱化学におけるキルヒホッフの法則(キルヒホッフのほうそく)、または、キルヒホフの法則とは、反応熱の温度係数が反応前後の熱容量の差に等しいという法則である。1858年にグスタフ・キルヒホッフが理論的に導いた。狭義の化学反応に伴う反応熱について成り立つだけでなく、や希釈熱などの、広義のについても一般に成り立つ。また、蒸発熱などの、状態変化に伴う潜熱についても適用できる。 この法則によると、反応後の熱容量が反応前の熱容量より大きい場合、発熱反応であれば、温度上昇とともに発熱量が減少する。吸熱反応であれば、逆に、温度上昇とともに吸熱量が増大する。反応後の熱容量が反応前の熱容量より小さい場合は、温度上昇とともに発熱量は増大し、吸熱量は減少する。いずれの場合でも、反応前後の熱容量の差が大きいほど、反応熱の温度依存性が顕著になる。 エンタルピーを用いると、上記の事柄はキルヒホッフの式と呼ばれる簡潔な式で表現できる。 ここで は、温度 、圧力 の定温定圧条件下で起こる反応に伴うエンタルピーの変化であり、反応エンタルピーと呼ばれる。発熱反応では である。また は、生成物の定圧熱容量から、同じ温度・圧力の下にある反応物の定圧熱容量を引いたものである。.

新しい!!: クラウジウス・クラペイロンの式とキルヒホッフの法則 (反応熱) · 続きを見る »

ギブズ・デュエムの式

ブズ-デュエムの式(Gibbs–Duhem equation)とは、熱力学的な系において化学ポテンシャルの変化量に対して成り立つ関係式のことである。二人の物理学者、ウィラード・ギブズとピエール・デュエムに由来する。 ここでNi は成分i の粒子数、p は圧力、V は体積、T は絶対温度、μi は成分i の化学ポテンシャル、S はエントロピーである。示強性変数p、T、μi を完全に独立に変化させることはできず、この式を満たすようにしか変化できない。 特に定温・定圧下では以下のような簡単な形になる。.

新しい!!: クラウジウス・クラペイロンの式とギブズ・デュエムの式 · 続きを見る »

ジュールの法則

ュールの法則(ジュールのほうそく、Joule's laws)は電流によって生み出される熱についての法則。または理想気体の圧力、体積、温度についてのエネルギー依存の法則である。 ジュールの第一法則は導体を流れる電流と、電流によって生み出される熱の関係を示した物理法則である。ジュール効果ともよばれる。1840年代に電流と発熱の関係を研究したジェームズ・プレスコット・ジュールから名づけられた。公式は である。ここでQは生み出される熱量、Iは抵抗を流れる一定の電流、Rは電気抵抗、tは電流が流れる時間である。電流がアンペア、抵抗がオーム、時間が秒で表されるとき、Qの単位はジュールである。ジュールの第一法則は後の1842年にハインリヒ・レンツによって独立に発見されたため、ジュール=レンツの法則ともよばれる。電流を流す導体の発熱効果はジュール熱とよばれる。 ジュールの第二法則は熱力学の法則であり、理想気体の内部エネルギーはその圧力や体積には依存せず、温度にのみ依存するという法則である。即ち または である。ここでUは理想気体の内部エネルギー、Tはその温度、f(T)は温度についての関数、Vはその体積、Pはその圧力である。.

新しい!!: クラウジウス・クラペイロンの式とジュールの法則 · 続きを見る »

固体

固体インスリンの単結晶形態 固体(こたい、solid)は物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。 今まで知られている最も軽い固体はエアロゲルであり、そのうち最も軽いものでは密度は約 1.9 mg/cm3 と水の密度の530分の1程度である。.

新しい!!: クラウジウス・クラペイロンの式と固体 · 続きを見る »

理想気体

想気体(りそうきたい、ideal gas)または完全気体(かんぜんきたい、)は、圧力が温度と密度に比例し、内部エネルギーが密度に依らない気体である。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子分子や原子など。の体積が無視できるほど小さく、構成粒子間には引力が働かない系である。 実際にはどんな気体分子気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。.

新しい!!: クラウジウス・クラペイロンの式と理想気体 · 続きを見る »

示量性と示強性

量性 (しりょうせい、) と示強性(しきょうせい、)は状態量の性質の一つである。 示量性を持つか示強性を持つかにより、状態量すなわち状態変数は示量変数 (extensive variable) と示強変数 (intensive variable) の2種類に分けられる。 遠山啓『量とはなにか〈I〉内包量・外延量』 太郎次郎社〈遠山啓著作集 数学教育論シリーズ〉、1978年。-->.

新しい!!: クラウジウス・クラペイロンの式と示量性と示強性 · 続きを見る »

熱力学的平衡

熱力学的平衡(ねつりきがくてきへいこう、)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。逆に言えば、系の状態が変化するときは、多少なりとも熱力学的平衡からずれていることを意味する。極限として、限りなく熱力学的平衡に近い状態を保って行われる状態変化は、準静的変化とよばれる。また、系が熱力学的平衡であるとき、あるいは局所的に平衡とみなせる部分について、系の温度や圧力などの示強性状態量を定義することができる。 熱力学的に非平衡 (non-equilibrium) であるとは、上記の熱的、力学的、化学的平衡のいずれかが満たされていない状態であり、系に物質またはエネルギーの正味の流れ、あるいは相転移などが生じる。またこのような非平衡状態は不安定であるため別の状態へ転移するが、転移速度が極めて遅いために不安定な状態が維持される場合、この状態を準安定状態という。.

新しい!!: クラウジウス・クラペイロンの式と熱力学的平衡 · 続きを見る »

熱力学的状態方程式

熱力学的状態方程式()は、内部エネルギーの体積依存性またはエンタルピーの圧力依存性と、状態方程式の間の関係式である。温度一定のもとでの内部エネルギー の体積依存性 は、温度 、体積 における圧力 を与える状態方程式 と の関係にある。この方程式は、エネルギー方程式(とも呼ばれる。温度一定のもとでのエンタルピー の圧力依存性 は、温度 、圧力 における体積 を与える状態方程式 と の関係にある。.

新しい!!: クラウジウス・クラペイロンの式と熱力学的状態方程式 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: クラウジウス・クラペイロンの式と熱力学温度 · 続きを見る »

物質量

物質量(ぶっしつりょう、)は、物質の量を表す物理量のひとつ体積、質量、分子数、原子数などでも物質の量を表すことができる。である。物質を構成する要素粒子の個数をアボガドロ定数 (約 6.022×1023 mol-1) で割ったものに等しい。要素粒子()は物質の化学式で表される。普通は、分子性物質の場合は分子が要素粒子であり、イオン結晶であれば組成式で書かれるものが要素粒子であり、金属では原子が要素粒子である。 物質量は1971年に国際単位系 (SI) の7番目の基本量に定められた。表記する場合は、量記号はイタリック体の 、量の次元の記号はサンセリフ立体の N が推奨されている。物質量のSI単位はモルであり、モルの単位記号は mol である。熱力学的な状態量として見れば示量性状態量に分類される。.

新しい!!: クラウジウス・クラペイロンの式と物質量 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: クラウジウス・クラペイロンの式と蒸発 · 続きを見る »

蒸発熱

蒸発熱(じょうはつねつ、heat of evaporation)または気化熱(きかねつ、heat of vaporization)とは、液体を気体に変化させるために必要な熱のことである。気化熱は潜熱の一種であるので、蒸発潜熱または気化潜熱ともいう。固体を気体に変化させるために必要な熱は昇華熱(しょうかねつ、heat of sublimation)または昇華潜熱という『新物理小事典』「気化熱」。。単に気化熱というときは液体の蒸発熱を指すことが多いが、液体の蒸発熱と固体の昇華熱を合わせて気化熱ということもある。以下この項目では、便宜上、液体の気化熱を蒸発熱と呼び、液体の蒸発熱と固体の昇華熱を合わせて気化熱と呼ぶ。 固体や液体が気体に変化する現象を気化という。気化にはエネルギーが必要である。物質が気化するとき、多くの場合、気化に必要なエネルギーは熱として物質に吸収される。多くのエアコンや冷蔵庫で、この吸熱作用を利用したヒートポンプという技術が使われている。 気化に必要なエネルギーは物質により異なる。データ集などでは、物質 1 キログラム当たりの値または物質 1 モル当たりの値が気化熱として記載されている。単位はそれぞれ kJ/kg (キロジュール毎キログラム)および kJ/mol (キロジュール毎モル)である。例えば 25 ℃ における水の蒸発熱は 2442 kJ/kg であり 44.0 kJ/mol である平衡蒸気圧の下での値。特記ない限り本文中の蒸発熱は次のサイトに依る: 。気化熱の大きさは、同じ物質でも気化する状況により変わる。通常は、1 気圧における沸点での値か、25 ℃ における平衡蒸気圧での値が物質の蒸発熱としてデータ集に記載されている本文中で引用した蒸発熱の値は、とくに断らない限り、1 気圧における沸点での値である。。例えば 1 気圧、100 ℃ の水の蒸発熱は 2257 kJ/kg であり、飽和水蒸気圧(32 hPa)の下での 25 ℃ の蒸発熱 2442 kJ/kg より1割近く減少する。 気体が液体に変化するときに放出される凝縮熱(ぎょうしゅくねつ、heat of condensation)の値は、同じ温度と同じ圧力の蒸発熱の値に符号も含めて等しい。 モル当たりの蒸発熱は、液体中で分子の間に働く引力に、分子が打ち勝つためのエネルギーであると解釈される。たとえばヘリウムの蒸発熱が 0.08 kJ/mol と極端に小さいのは、ヘリウム原子の間に働くファンデルワールス力が非常に弱いためである。 それに対して、液体中の分子の間に水素結合が働いていると、水やアンモニアのように蒸発熱が大きくなる。金属のモル当たりの昇華熱は、金属結合で結ばれた 1 モルの金属結晶の塊をバラバラにして 6.02×1023 個の原子にするのに必要なエネルギーに相当する。遷移金属の昇華熱は、数百キロジュール毎モルの程度である。.

新しい!!: クラウジウス・クラペイロンの式と蒸発熱 · 続きを見る »

蒸気圧

蒸気圧(じょうきあつ、)、あるいは平衡蒸気圧(へいこうじょうきあつ、)とは、液相あるいは固相にある物質と相平衡になるような、その物質の気相の圧力のことである。蒸気圧は物質に特有の物性値であり、温度に依存して決まる。 物質の沸点とは、その物質が液相にあるときの蒸気圧が外圧に等しくなる温度である。また、物質の昇華点とは、その物質が固相にあるときの蒸気圧が外圧に等しくなる温度である。さらに物質が液相と固相の平衡状態にあるときの蒸気圧が外圧に等しくなる温度は三重点と呼ばれる。 液体の物質の周囲でのその物質の蒸気の分圧が液相の蒸気圧に等しいとき、その液体は蒸気と気液平衡の状態にある。 気液平衡から温度を上げると蒸気圧が上がり、蒸気の分圧より大きくなる。蒸気を理想気体とみなせば、分圧は蒸気量に比例する。液体が蒸発することで蒸気量が増えて分圧も上がり、新たな温度での蒸気圧と等しくなることで再び気液平衡となる。逆に温度を下げると蒸気圧が下がる。このときは蒸気が液体に凝縮することで分圧が下がり、新たな温度で気液平衡となる。気相と固相の相平衡でも同様に、温度の変化に対して物質が昇華して分圧が蒸気圧と等しくなるように蒸気量が変化して平衡が保たれる。 純物質の蒸気圧はクラウジウス・クラペイロンの式によって近似される。溶液であれば蒸気圧降下が起こり、これはラウールの法則で近似される。.

新しい!!: クラウジウス・クラペイロンの式と蒸気圧 · 続きを見る »

臨界温度

臨界温度(りんかいおんど、critical temperature、Tc)とは、.

新しい!!: クラウジウス・クラペイロンの式と臨界温度 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: クラウジウス・クラペイロンの式と自由エネルギー · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: クラウジウス・クラペイロンの式と極限 · 続きを見る »

水蒸気

水蒸気(すいじょうき、稀にスチームともいう)は、水が気化した蒸気。空気中の水蒸気量、特に飽和水蒸気量に対する水蒸気量の割合を湿度という。.

新しい!!: クラウジウス・クラペイロンの式と水蒸気 · 続きを見る »

気体定数

気体定数(きたいていすう、)は、理想気体の状態方程式における係数として導入される物理定数であるアトキンス『物理化学』 p.20。理想気体だけでなく、実在気体や液体における量を表すときにも用いられる。 気体定数の測定法としては、低圧の領域で状態方程式から計算する方法もあるが、低圧で音速測定を行い、そこから求めるほうが正確に得られる。 モル気体定数(モルきたいていすう、)の値は である(2014CODATA推奨値)。 気体定数は、ボルツマン定数 のアボガドロ定数 倍である。したがって、2019年5月20日に施行予定の国際単位系(SI)の改定(新しいSIの定義)によって、ボルツマン定数もアボガドロ定数も定義定数となるので、気体定数も定義定数となり となる。.

新しい!!: クラウジウス・クラペイロンの式と気体定数 · 続きを見る »

気液平衡

気液平衡(きえきへいこう)とは、化学平衡の一種で、液体から気体になる蒸発、気化反応と、気体から液体になる凝縮、液化反応の速度が等しくなり、結果、液体と気体の量が変化しなくなっているように見える状態のことである。 溶液の場合は蒸気圧降下が起こるために、一概に気液平衡の状態は同じにはならない。.

新しい!!: クラウジウス・クラペイロンの式と気液平衡 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: クラウジウス・クラペイロンの式と液体 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: クラウジウス・クラペイロンの式と温度 · 続きを見る »

ここにリダイレクトされます:

クラペイロン-クラウジウスの式クラペイロンの式クラペイロン・クラウジウスの式クラペイロン=クラウジウスの式クラウジウス-クラペイロンの式クラウジウス=クラペイロンの式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »