ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

カルバニオンと有機化学

ショートカット: 違い類似点ジャカード類似性係数参考文献

カルバニオンと有機化学の違い

カルバニオン vs. 有機化学

ルバニオン (carbanion) とは、有機化学であらわれる、炭素上に負電荷を有する有機化合物や化学種の総称である。有機合成において、炭素-炭素結合を作るための合成中間体として用いられる。. 有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

カルバニオンと有機化学間の類似点

カルバニオンと有機化学は(ユニオンペディアに)共通で11ものを持っています: 塩基孤立電子対オクテット則グリニャール試薬ケイ素共鳴理論炭化水素電気陰性度混成軌道有機合成化学有機電子論

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

カルバニオンと塩基 · 塩基と有機化学 · 続きを見る »

孤立電子対

孤立電子対(こりつでんしつい、lone pair)とは、原子の最外殻の電子対のうち、共有結合に関与していない電子対のこと。それゆえ、非共有電子対(ひきょうゆうでんしつい、unshared electron pair)とも呼ばれる。 英語では、lone pairなので、「lp」と略すこともある。 量子力学的には、電子軌道はエネルギー準位の低いものから占有され、且つ一つの軌道にはスピンの異なる電子しか入ることができない。電子のスピンは+1/2と-1/2の二種類のみであるので対を成して軌道を占有することになる。分子軌道上にない電子はその原子のみに属するので、これを孤立電子対と呼ぶ。有機電子論では反応機構の要素として孤立電子対に独特の役割を想定していたが、量子論を中心とした現代の反応論では「共有結合に関与していない電子対」以上の意味はない。 孤立電子対の電子は金属やルイス酸性物質に配位することが可能であり、孤立電子対を持つ化合物は配位子やルイス塩基として働くことができる。.

カルバニオンと孤立電子対 · 孤立電子対と有機化学 · 続きを見る »

オクテット則

テット則(-そく、Octet rule)は原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則。オクテット説(-せつ)、八隅説(はちぐうせつ)ともいう。 第二周期の元素や第三周期のアルカリ金属、アルカリ土類金属までにしか適用できないが、多くの有機化合物に適用できる便利な規則である(→18電子則)。ただし、カルボカチオンや無機化合物を中心とする多くの例外も存在する。.

オクテット則とカルバニオン · オクテット則と有機化学 · 続きを見る »

グリニャール試薬

リニャール試薬(グリニャールしやく、Grignard reagent)はヴィクトル・グリニャールが発見した有機マグネシウムハロゲン化物で、一般式が R−MgX と表される有機金属試薬である(R は有機基、X はハロゲンを示す)。昨今の有機合成にはもはや欠かせない有機金属化学の黎明期を支えた試薬であり、今もなおその多彩な用途が広く利用される有機反応試剤として、近代有機化学を通して非常に重要な位置を占めている。 その調製は比較的容易であり、ハロゲン化アルキルにエーテル溶媒中で金属マグネシウムを作用させると、炭素-ハロゲン結合が炭素-マグネシウム結合に置き換わりグリニャール試薬が生成する。生成する炭素-マグネシウム結合では炭素が陰性、マグネシウムが陽性に強く分極しているため、グリニャール試薬の有機基は強い求核試薬 (形式的には R−)としての性質を示す。 また、強力な塩基性を示すため、酸性プロトンが存在すると、酸塩基反応によりグリニャール試薬は炭化水素になってしまう。そのため、水の存在下では取り扱うことができず、グリニャール試薬を合成する際には原料や器具を十分に乾燥させておく必要がある。これらの反応性や取り扱いはアルキルリチウムと類似している。.

カルバニオンとグリニャール試薬 · グリニャール試薬と有機化学 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

カルバニオンとケイ素 · ケイ素と有機化学 · 続きを見る »

共鳴理論

二酸化窒素の寄与構造の内の2種類 化学における共鳴理論(きょうめいりろん)とは、量子力学的共鳴の概念により、共有結合を説明しようとする理論である。.

カルバニオンと共鳴理論 · 共鳴理論と有機化学 · 続きを見る »

炭化水素

炭化水素(たんかすいそ、hydrocarbon)は炭素原子と水素原子だけでできた化合物の総称である。その分子構造により鎖式炭化水素と環式炭化水素に大別され、更に飽和炭化水素、不飽和炭化水素、脂環式炭化水素、芳香族炭化水素などと細分化される 金沢大学教育学部附属高等学校 化学 Ib 学習テキスト。炭化水素で最も構造の簡単なものはメタンである。 また、石油や天然ガスの主成分は炭化水素やその混合物であり、石油化学工業の原料として今日の社会基盤を支える資源として欠くべからざる物である。.

カルバニオンと炭化水素 · 有機化学と炭化水素 · 続きを見る »

電気陰性度

電気陰性度(でんきいんせいど、electronegativity)は、分子内の原子が電子を引き寄せる強さの相対的な尺度であり、ギリシャ文字のχで表されるShriver & Atkins (2001), p.45。。 異種の原子同士が化学結合しているとする。このとき、各原子における電子の電荷分布は、当該原子が孤立していた場合と異なる分布をとる。これは結合の相手の原子からの影響によるものであり、原子の種類により電子を引きつける強さに違いが存在するためである。 この電子を引きつける強さは、原子の種類ごとの相対的なものとして、その尺度を決めることができる。この尺度のことを電気陰性度と言う。一般に周期表の左下に位置する元素ほど小さく、右上ほど大きくなる。.

カルバニオンと電気陰性度 · 有機化学と電気陰性度 · 続きを見る »

混成軌道

4つの ''sp''3混成軌道 3つの ''sp''2混成軌道 化学において、混成軌道(こんせいきどう、Hybrid orbital)は、原子価結合法において化学結合を形成する電子対を作るのに適した軌道関数(オービタル)である(これを原子価状態と呼ぶ)。混成(hybridization)は一つの原子上の原子軌道を混合する(線型結合をとる)概念であり、作られた新たな混成軌道は構成要素の原子軌道とは異なるエネルギーや形状等を持つ。混成軌道の概念は、第2周期以降の原子を含む分子の幾何構造と原子の結合の性質の説明に非常に有用である。 原子価殻電子対反発則(VSEPR則)と共に教えられることがあるものの、原子価結合および混成はVSEPRモデルとは実際に関係がない。 分子の構造は各原子と化学結合から成り立っているので、化学結合の構造が原子核と電子との量子力学でどのように解釈されるかは分子の挙動を理論的に解明していく上で基盤となる。化学結合を量子力学で扱う方法には主に、分子軌道法と原子価結合法とがある。前者は分子の原子核と電子との全体を一括して取り扱う方法であるのに対して、原子価軌道法では分子を、まず化学結合のところで切り分けた原子価状態と呼ばれる個々の原子と価電子の状態を想定する。次の段階として、分子の全体像を原子価状態を組み立てることで明らかにしてゆく。具体的には個々の原子の軌道や混成軌道をσ結合やπ結合の概念を使って組み上げることで、共有結合で構成された分子像を説明していくことになる。それゆえに、原子軌道から原子価状態を説明付ける際に利用する混成軌道の概念は原子価軌道法の根本に位置すると考えられる。 原子価結合法と分子構造.

カルバニオンと混成軌道 · 有機化学と混成軌道 · 続きを見る »

有機合成化学

有機合成化学(ゆうきごうせいかがく、英語:organic synthetic chemistry)とは、有機化合物の新規な合成方法を研究する学問であり、有機化学の一大分野である。時として合成有機化学(synthetic organic chemistry)、あるいは「有機」の語が略されて単に合成化学と呼ばれる場合もある。.

カルバニオンと有機合成化学 · 有機化学と有機合成化学 · 続きを見る »

有機電子論

有機電子論(ゆうきでんしろん、electronic theory of organic chemistry)とは化学結合の性質および反応機構を、電荷の静電相互作用と原子を構成する価電子とにより説明する理論である。有機化学の領域では単に電子論と呼ばれる。.

カルバニオンと有機電子論 · 有機化学と有機電子論 · 続きを見る »

上記のリストは以下の質問に答えます

カルバニオンと有機化学の間の比較

有機化学が131を有しているカルバニオンは、24の関係を有しています。 彼らは一般的な11で持っているように、ジャカード指数は7.10%です = 11 / (24 + 131)。

参考文献

この記事では、カルバニオンと有機化学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »