ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

カルシウムと酸化アルミニウム

ショートカット: 違い類似点ジャカード類似性係数参考文献

カルシウムと酸化アルミニウムの違い

カルシウム vs. 酸化アルミニウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。. 酸化アルミニウム(さんかアルミニウム、)は、化学式がAlOで表されるアルミニウムの両性酸化物である。通称はアルミナ(α-アルミナ)、礬土(ばんど)。天然にはコランダム、ルビー、サファイアとして産出する。おもに金属アルミニウムの原料として使われるほか、硬度を生かして研磨剤、高融点を生かして耐火物としての用途もある。立方晶系のγ-アルミナは高比表面積を持つことから触媒として重要である。.

カルシウムと酸化アルミニウム間の類似点

カルシウムと酸化アルミニウムは(ユニオンペディアに)共通で10ものを持っています: 単体チタンアルミニウムシリカ研磨材結晶構造融点酸素電気分解

単体

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。 酸素 (O2) とオゾン (O3)、あるいは赤リンと黄リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。.

カルシウムと単体 · 単体と酸化アルミニウム · 続きを見る »

チタン

二酸化チタン粉末(最も広く使用されているチタン化合物) チタン製指輪 (酸化皮膜技術で色彩を制御) チタン(Titan 、titanium 、titanium)は、原子番号22の元素。元素記号は Ti。第4族元素(チタン族元素)の一つで、金属光沢を持つ遷移元素である。 地球を構成する地殻の成分として9番目に多い元素(金属としてはアルミニウム、鉄、マグネシウムに次ぐ4番目)で、遷移元素としては鉄に次ぐ。普通に見られる造岩鉱物であるルチルやチタン鉄鉱といった鉱物の主成分である。自然界の存在は豊富であるが、さほど高くない集積度や製錬の難しさから、金属として広く用いられる様になったのは比較的最近(1950年代)である。 チタンの性質は化学的・物理的にジルコニウムに近い。酸化物である酸化チタン(IV)は非常に安定な化合物で、白色顔料として利用され、また光触媒としての性質を持つ。この性質が金属チタンの貴金属に匹敵する耐食性や安定性をもたらしている。(水溶液中の実際的安定順位は、ロジウム、ニオブ、タンタル、金、イリジウム、白金に次ぐ7番目。銀、銅より優れる) 貴金属が元素番号第5周期以降に所属する重金属である一方でチタンのみが第4周期に属する軽い金属である(鋼鉄の半分)。.

カルシウムとチタン · チタンと酸化アルミニウム · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

アルミニウムとカルシウム · アルミニウムと酸化アルミニウム · 続きを見る »

シリカ

リカ()は、二酸化ケイ素(SiO2)、もしくは二酸化ケイ素によって構成される物質の総称。シリカという呼び名のほかに無水ケイ酸、ケイ酸、酸化シリコンと呼ばれることもある。 純粋なシリカは無色透明であるが、自然界には不純物を含む有色のものも存在する。自然界では長石類に次いで産出量が多い。鉱物として存在するほか生体内にも微量ながら含まれる。.

カルシウムとシリカ · シリカと酸化アルミニウム · 続きを見る »

研磨材

材(けんまざい)は、相手を削り研ぎ磨くのに使う硬い粒ないし粉であり、研磨剤と表記されたり研削材とも呼ばれる。研磨材を構成する1粒は「砥粒」(とりゅう)と呼ばれる。日常で用いられる細かな研磨材は「磨き粉」(みがきこ)などと呼ばれる。本記事では便宜上、研磨材と研磨剤を同一のものとして扱う。 研磨材そのものの形態には、粉末状の他に油などを加えてペースト状にしたものがあり、使用時には研磨液を加えることが一般的である。研磨材を結合剤で結着することで人工砥石が作られ、紙や布の片面に接着することでシート状の研磨シートが作られる。 研削作業には、古くから石榴石(ざくろ石)、 エメリーなど天然鉱物が使われてきたが、19世紀末にそれらよりも硬い人造研削材が工業生産され、現在は人造品が主流である。.

カルシウムと研磨材 · 研磨材と酸化アルミニウム · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

カルシウムと結晶構造 · 結晶構造と酸化アルミニウム · 続きを見る »

融点

融点(ゆうてん、Schmelzpunkt、point de fusion、melting point)とは、固体が融解し液体になる時の温度のことをいう。ヒステリシスが無い場合には凝固点(液体が固体になる時の温度)と一致する。また、三重点すなわち平衡蒸気圧下の融点は物質固有の値を取り、不純物が含まれている場合は凝固点降下により融点が低下することから物質を同定したり、純度を確認したりする手段として用いられる。 熱的に不安定な物質は溶融と共に分解反応が生じる場合もある。その場合の温度は分解点と呼ばれる場合があり、融点に(分解)と併記されることがある。.

カルシウムと融点 · 融点と酸化アルミニウム · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

カルシウムと酸素 · 酸化アルミニウムと酸素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

カルシウムと鉄 · 酸化アルミニウムと鉄 · 続きを見る »

電気分解

電気分解(でんきぶんかい)英語:Electrolysisは、化合物に電圧をかけることで、陰極で還元反応、陽極で酸化反応を起こして化合物を化学分解する方法である。略して電解ともいう。同じ原理に基づき、電気化学的な酸化還元反応によって物質を合成する方法は電解合成と呼ばれ、特に生成物が高分子となる場合は電解重合という。 塩素やアルミニウムなど様々な化学物質が電気分解によって生産されている。水の電気分解は初等教育の中でも取り上げられる典型的な化学実験であるとともに、エネルギー源として期待される水素の製造法として研究が進められている。.

カルシウムと電気分解 · 酸化アルミニウムと電気分解 · 続きを見る »

上記のリストは以下の質問に答えます

カルシウムと酸化アルミニウムの間の比較

酸化アルミニウムが81を有しているカルシウムは、244の関係を有しています。 彼らは一般的な10で持っているように、ジャカード指数は3.08%です = 10 / (244 + 81)。

参考文献

この記事では、カルシウムと酸化アルミニウムとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »