ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

カテネーションとスズ

ショートカット: 違い類似点ジャカード類似性係数参考文献

カテネーションとスズの違い

カテネーション vs. スズ

テネーション (Catenation) とは、同種元素の原子が長鎖状に結合することを指す用語である。最も良く知られているカテネーションの例は炭素原子によるもので、共有結合により多数の炭素が結合して長鎖および構造を作る。このことが自然界に膨大な種類の有機化合物が存在する理由である。炭素はそのカテネーションの性質が最も良く知られている元素であり、有機化学は根本的にカテネーションを起こした炭素の構造(カテネー catenae とも呼ばれる)を調べる学問だと言える。しかし、炭素がカテネーを形成する唯一の元素であるわけではまったくなく、他にもケイ素、硫黄、ホウ素などの典型元素が幅広いカテネーを形成できることが知られている。 元素がカテネーションを起こせるかどうかは基本的に自分自身とのによって決まる。結合エネルギーは、重なりあって結合を作る原子軌道がより拡がったもの(高い方位量子数を持つもの)のほうがより低くなる。したがって、最も拡がっていない価電子殻 p 軌道を持っている炭素はより重い元素よりも長い p-p σ結合原子鎖を形成することができる。カテネーション能は立体障害や、電気陰性度や分子軌道の混成などの電子的な因子によっても左右され、共有結合の種類によっても変化する。炭素の場合、隣接原子とのσ結合が十分強く、安定な原子鎖を完全に形成できる。別の元素の場合、反証が山程あるにもかかわらずかつてはこれが極端に難しいことだとされておいた。 硫黄の有用な化学的性質の大部分はカテネーションによる。自然状態では、硫黄は 分子の形で存在する。この環は熱すると開裂し、別の環と結合してどんどん長い原子鎖を形成する。このことは、鎖が長くなるにつれて徐々に高くなる粘度から立証できる。セレンやテルルもこのような構造の変種を示す。 ケイ素は別のケイ素原子とσ結合を形成することができる(ジシランがこの類の化合物の祖である)。しかし、 分子(飽和炭化水素アルカンに相当)を調製および分離するのは n がおよそ 8 よりも大きくなると困難になる。これはその熱力学安定性がケイ素原子の増加につれて低下するためである。ジシランよりも重いポリシランは と水素に分解する。しかし、適切な有機置換基で水素を置換すれば、アルカンに相当する(ときたま間違ってポリシレン polysilenes とも呼ばれる)を調製することが可能である。これらの長鎖化合物は、鎖にそった電子の非局在化に起因する驚くべき電気的特性(高い電気伝導度など)を示す。 (有機置換基のついた)リン鎖も調製されているが、非常に壊れやすい。小さな環状化合物やクラスタがより一般的である。 ケイ素–ケイ素π結合も可能である。しかし、これらの結合は炭素の場合よりも安定性に欠ける。 ジシランはエタンと比べて極めて反応性が高い。ジシレンはアルケンとは違って非常に稀である。長らく、不安定なため単離不可能と考えられてきたの例が2004年に報告された。 近年、ケイ素、ゲルマニウム、ヒ素、ビスマスなど様々な半金属元素間の二重・三重結合が報告されている。特定の典型元素のカテネーション能はの分野で研究が進められている。. (錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

カテネーションとスズ間の類似点

カテネーションとスズは(ユニオンペディアに)共通で6ものを持っています: ビスマスケイ素ゲルマニウム共有結合典型元素立体障害

ビスマス

ビスマス(bismuth)は原子番号83の元素。元素記号は Bi。第15族元素の一つ。日本名は蒼鉛。.

カテネーションとビスマス · スズとビスマス · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

カテネーションとケイ素 · ケイ素とスズ · 続きを見る »

ゲルマニウム

ルマニウム(germanium )は原子番号32の元素。元素記号は Ge。炭素族の元素の一つ。ケイ素より狭いバンドギャップ(約0.7 eV)を持つ半導体で、結晶構造は金剛石構造である。.

カテネーションとゲルマニウム · ゲルマニウムとスズ · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

カテネーションと共有結合 · スズと共有結合 · 続きを見る »

典型元素

典型元素(てんけいげんそ、main group (block) element、typical element、representative element)とは、周期表の1族、2族と12族から18族の元素で、全ての非金属と一部の金属から構成される元素の区分である。これに対して3族から11族の元素は遷移元素と呼ばれる。 典型元素はsブロック元素(1 - 2族)とpブロック元素(12 - 18族)とから構成され、(2族の隣は13族とすると)族番号が増えるにつれ価電子が一つずつ増え、族ごとに固有の化学的性質を示す。言い換えると、価電子により化学結合の特性が決まる(記事電子配置に詳しい)ため、価電子の構成を同一にする族ごとに化学的性質が変化することになる。.

カテネーションと典型元素 · スズと典型元素 · 続きを見る »

立体障害

立体障害(りったいしょうがい, steric effects)とは分子内および分子間で分子を構成する各部分がぶつかることによる回転などの制限のこと。 立体障害は化学では非常に大きな意味を持ち、(有機化学の試験で基質の反応性が違う理由の多くは立体障害、ほかには電子状態、溶媒効果、各種相互作用など)非常に重要である。一般の置換反応や付加反応における分子の反応中心への接近、LDAに代表される求核剤と塩基、アトロプ異性などのような結合周りの回転の制限や、不安定化合物の安定化、不斉合成における配位子設計など多くの場面に関わっている。 立体障害の大きな置換基としてはイソプロピル基、tert-ブチル基、メシチル基などが挙げられる。分子模型としてよく用いられている球棒モデル(原子を表す球と原子間の結合を表す棒からなる模型、右図右)ではあまり実感がわかないが、CPKモデル(右図左)を用いると立体障害がいかに大きな意味を持つかがよく分かる。.

カテネーションと立体障害 · スズと立体障害 · 続きを見る »

上記のリストは以下の質問に答えます

カテネーションとスズの間の比較

スズが201を有しているカテネーションは、23の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は2.68%です = 6 / (23 + 201)。

参考文献

この記事では、カテネーションとスズとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »