ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

カオス理論と方程式

ショートカット: 違い類似点ジャカード類似性係数参考文献

カオス理論と方程式の違い

カオス理論 vs. 方程式

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。. 14''x'' + 15.

カオス理論と方程式間の類似点

カオス理論と方程式は(ユニオンペディアに)共通で4ものを持っています: 力学系可積分系微分方程式ロジスティック方程式

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

カオス理論と力学系 · 力学系と方程式 · 続きを見る »

可積分系

数学や物理学では、可積分系 と名付けられた様々な考え方が知られている。 微分可能な系の一般論では、フロベニウス可積分性 が過剰な決定系として知られている。ハミルトン力学系の古典理論では、リウヴィル可積分性 がある。より一般的には、微分方程式の可積分性は、相空間の不変部分多様体による の存在に関係している。これらの考え方の各々は、葉層のアイデアを応用しているが、同じではない。量子力学や統計力学モデルの設定には完備可積分性 や完全可積分性 という考え方もある。可積分系は、微分作用素の代数幾何学へ引き戻して考える場合もある。.

カオス理論と可積分系 · 可積分系と方程式 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

カオス理論と微分方程式 · 微分方程式と方程式 · 続きを見る »

ロジスティック方程式

ティック方程式(ロジスティックほうていしき、英語:logistic equation)は、生物の個体数の変化の様子を表す数理モデルの一種である。ある単一種の生物が一定環境内で増殖するようなときに、その生物の個体数(個体群サイズ)の変動を予測できる。人間の場合でいえば、人口の変動を表すモデルである。 1838年にベルギーの数学者ピエール=フランソワ・フェルフルスト(Pierre-François Verhulst)によって、ロジスティック方程式は最初に発案された。フェルフルストは、1798年に発表されて大きな反響を呼んだトマス・ロバート・マルサスの『人口論』の不自然な点を解消するために、このモデルを考案した。マルサスは『人口論』で、人口は原理的に指数関数的に増加することを指摘した。しかし、実際には環境や資源は限られているため、人口の増加にはいずれブレーキがかかると考えるのが自然である。人口が増えるに連れて人口増加率は低減し、人口はどこかで飽和すると考えられる。ロジスティック方程式はこの点を取り入れて、生物の個体数増殖をモデル化したものである。フェルフルスト以後には、アメリカの生物学者レイモンド・パール(Raymond Pearl)が式を普及させた。 具体的には、ロジスティック方程式は という微分方程式で表される。N は個体数、t は時間、dN/dt が個体数の増加率を意味する。r は内的自然増加率、K は環境収容力と呼ばれる定数である。個体数が増えて環境収容力に近づくほど、個体数増加率が減っていくというモデルになっている。 式の解(個体数と時間の関係)はS字型の曲線を描き、個体数は最終的には環境収容力の値に収束する。この曲線や解の関数はロジスティック曲線やロジスティック関数として知られる。方程式の名称は、ロジスティック式やロジスティックモデル、ロジスティック微分方程式と表記される場合もある。発案者の名からVerhulst方程式、発案者と普及者の名からVerhulst-Pearl方程式とも呼ばれる。 ロジスティック方程式は、個体群生態学あるいは個体群動態論における数理モデルとしては入門的なものとして位置づけられ、より複雑な現象に対応する基礎を与える。数学分野としては、微分方程式論や力学系理論の初等的な話題としても取り上げられる。.

カオス理論とロジスティック方程式 · ロジスティック方程式と方程式 · 続きを見る »

上記のリストは以下の質問に答えます

カオス理論と方程式の間の比較

方程式が92を有しているカオス理論は、78の関係を有しています。 彼らは一般的な4で持っているように、ジャカード指数は2.35%です = 4 / (78 + 92)。

参考文献

この記事では、カオス理論と方程式との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »