ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ウランと放射性同位体

ショートカット: 違い類似点ジャカード類似性係数参考文献

ウランと放射性同位体の違い

ウラン vs. 放射性同位体

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号は U。ウラニウムの名でも知られるが、これは金属元素を意味するラテン語の派生名詞中性語尾 -ium を付けた形である。なお、ウランという名称は、同時期に発見された天王星 (Uranus) の名に由来している。. 放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。.

ウランと放射性同位体間の類似点

ウランと放射性同位体は(ユニオンペディアに)共通で18ものを持っています: 原子番号半減期同位体人工放射性元素ネプツニウムポロニウムラドントリウムプルトニウムアルファ崩壊アクチノイドウラン235ウラン238ウラン系列元素超ウラン元素放射線放射性物質

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

ウランと原子番号 · 原子番号と放射性同位体 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

ウランと半減期 · 半減期と放射性同位体 · 続きを見る »

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。.

ウランと同位体 · 同位体と放射性同位体 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

ウランと人工放射性元素 · 人工放射性元素と放射性同位体 · 続きを見る »

ネプツニウム

ネプツニウム (neptunium) は原子番号93の元素。元素記号は Np。アクチノイド元素の一つ。また最も軽い超ウラン元素でもある。銀白色の金属で、展性、延性に富んでいる。常温、常圧(25℃、1atm)での安定な結晶構造は斜方晶系。280 付近から正方晶系となり、更に580 付近より体心立方構造 (BCC) が安定となる。比重は20.45、融点は640 、沸点は3900 。原子価は+3から+7価(+5価が安定)。 ネプツニウム239の半減期は2.4日。ウラン238は天然にも存在するので、ネプツニウム239、プルトニウム239は天然にもごく僅かに存在する。他にネプツニウム236(半減期15.4万年)、ネプツニウム237(半減期214万年)などがある。 ネプツニウム237はネプツニウム系列(ネプツニウム237からタリウム205までの崩壊過程の系列)の親核種である。この系列の元素で半減期が一番長いネプツニウム237でも半減期が214万年しかないため、この系列は天然には極めて稀にしか存在しないが、最終系列核種のビスマス、タリウムはごく普遍的に天然に存在する。また、ウラン鉱の中から極微量のネプツニウムが核種崩壊の際の副産物としてしばしば発見される。ネプツニウム237は、核兵器の爆発によって生成する。.

ウランとネプツニウム · ネプツニウムと放射性同位体 · 続きを見る »

ポロニウム

ポロニウム(polonium)は原子番号84の元素。元素記号は Po。漢字では。安定同位体は存在しない。第16族元素の一つ。銀白色の金属(半金属)。常温、常圧で安定な結晶構造は、単純立方晶 (α-Po)。36 以上で立方晶から菱面体晶 (β-Po) に構造相転移する。.

ウランとポロニウム · ポロニウムと放射性同位体 · 続きを見る »

ラドン

ラドン(radon)は、原子番号86の元素。元素記号は Rn。.

ウランとラドン · ラドンと放射性同位体 · 続きを見る »

トリウム

トリウム (thorium 、漢字:釷) は原子番号90の元素で、元素記号は Th である。アクチノイド元素の一つで、銀白色の金属。 1828年、スウェーデンのイェンス・ベルセリウスによってトール石 (thorite、ThSiO4) から発見され、その名の由来である北欧神話の雷神トールに因んで命名された。 モナザイト砂に多く含まれ、多いもので10 %に達する。モナザイト砂は希土類元素(セリウム、ランタン、ネオジム)資源であり、その副生産物として得られる。主な産地はオーストラリア、インド、ブラジル、マレーシア、タイ。 天然に存在する同位体は放射性のトリウム232一種類だけで、安定同位体はない。しかし、半減期が140.5億年と非常に長く、地殻中にもかなり豊富(10 ppm前後)に存在する。水に溶けにくく海水中には少ない。 トリウム系列の親核種であり、放射能を持つ(アルファ崩壊)ことは、1898年にマリ・キュリーらによって発見された。 トリウム232が中性子を吸収するとトリウム233となり、これがベータ崩壊して、プロトアクチニウム233となる。これが更にベータ崩壊してウラン233となる。ウラン233は核燃料であるため、その原料となるトリウムも核燃料として扱われる。.

ウランとトリウム · トリウムと放射性同位体 · 続きを見る »

プルトニウム

プルトニウム(英Plutonium)は、原子番号94の元素である。元素記号は Pu。アクチノイド元素の一つ。.

ウランとプルトニウム · プルトニウムと放射性同位体 · 続きを見る »

アルファ崩壊

アルファ崩壊(アルファほうかい、α崩壊、alpha decay)とは、放射線としてアルファ線(α線)を放出する放射性崩壊の一種である。アルファ崩壊が発生する原因は量子力学におけるトンネル効果である。.

アルファ崩壊とウラン · アルファ崩壊と放射性同位体 · 続きを見る »

アクチノイド

アクチノイド (Actinoid) とは、原子番号89から103まで、すなわちアクチニウムからローレンシウムまでの15の元素の総称を言う。.

アクチノイドとウラン · アクチノイドと放射性同位体 · 続きを見る »

ウラン235

ウラン235(uranium-235, U)はウランの同位体の一つ。1935年にArthur Jeffrey Dempsterにより発見された。ウラン238とは違いウラン235は核分裂の連鎖反応をおこす。ウラン235の原子核は中性子を吸収すると2つに分裂する。また、この際に2個ないし3個の中性子を出し、それによってさらに反応が続く。原子力発電では多量の中性子を吸収するホウ素、カドミウム、ハフニウムなどでできた制御棒で反応を制御している。核兵器では反応は制御されず、大量のエネルギーが一気に解放され核爆発を起こす。 ウラン235の核分裂で発生するエネルギーは一原子当たりでは200 MeVであり、1モル当たりでは18 TJである。 自然に存在するウランの内ウラン235は0.72パーセントであり長倉三郎ほか編、『』、岩波書店、1998年、項目「ウラン」より。ISBN 4-00-080090-6、残りの大部分はウラン238である。この濃度では軽水炉で反応を持続させるのには不十分であり、濃縮ウランが使われる。一方、重水炉では濃縮していないウランでも使用できる。核爆発を起こさせるためには90パーセント程度の純度が求められる。.

ウランとウラン235 · ウラン235と放射性同位体 · 続きを見る »

ウラン238

ウラン238(uranium-238、U)とはウランの同位体の一つ。ウラン238は中性子が衝突するとウラン239となる。ウラン239は不安定でβ-崩壊しネプツニウム239になり、さらにβ-崩壊(半減期2.355日)しプルトニウム239となる。 天然のウランの99.284%がウラン238である。半減期は4.468 × 109年(44億6800万年)。劣化ウランはほとんどがウラン238である。濃縮ウランは天然ウランを濃縮して、よりウラン235の濃度を高めたものである。 ウラン238は核兵器や原子力発電と関係がある。.

ウランとウラン238 · ウラン238と放射性同位体 · 続きを見る »

ウラン系列

ウラン系列(うらんけいれつ、Uranium series)もしくはラジウム系列(らじうむけいれつ、Radium series)は、ウラン238から鉛206までの崩壊過程のことである。nを整数とすると4n+2で表すことができるので4n+2系列ともいう。 この系列では、起点となるウラン238と最終核種である鉛206を除くと、ウラン234・トリウム230・ラジウム226の半減期が比較的長い。このため、ウラン238の崩壊によって供給される娘核種の中で、これら3種が自然界では僅かながら確認できる放射性同位体となる。.

ウランとウラン系列 · ウラン系列と放射性同位体 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

ウランと元素 · 元素と放射性同位体 · 続きを見る »

超ウラン元素

原子核物理学または化学において、超ウラン元素(ちょうウランげんそ、TRans-Uranium, TRU)とは、原子番号92のウランよりも重い元素を指す。.

ウランと超ウラン元素 · 放射性同位体と超ウラン元素 · 続きを見る »

放射線

放射線(ほうしゃせん、radiation、radial rays)とは、高い運動エネルギーをもって流れる物質粒子(アルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などの粒子放射線)と高エネルギーの電磁波(ガンマ線とX線のような電磁放射線)の総称をいう。「放射線」に全ての電磁波を含め、電離を起こすエネルギーの高いものを電離放射線、そうでないものを非電離放射線とに分けることもあるが、一般に「放射線」とだけいうと、高エネルギーの電離放射線の方を指していることが多い 。 なお、広辞苑には「放射性元素の放射性崩壊に伴い放出される粒子放射線と電磁放射線(主にアルファ線、ベータ線、ガンマ線)を指す」広辞苑第五版 p.2432【放射線】、とあるが、これは放射性物質の放射能を問題とする文脈ではそれを指す、というくらいの意味である。.

ウランと放射線 · 放射性同位体と放射線 · 続きを見る »

放射性物質

放射性物質(ほうしゃせいぶっしつ、長倉三郎ほか編、『 』、岩波書店、1998年、項目「放射性物質」より。ISBN 4-00-080090-6)とは、放射能を持つ物質の総称である。主に、ウラン、プルトニウム、トリウムのような核燃料物質、放射性元素もしくは放射性同位体、中性子を吸収又は核反応を起こして生成された放射化物質を指す。.

ウランと放射性物質 · 放射性同位体と放射性物質 · 続きを見る »

上記のリストは以下の質問に答えます

ウランと放射性同位体の間の比較

放射性同位体が71を有しているウランは、157の関係を有しています。 彼らは一般的な18で持っているように、ジャカード指数は7.89%です = 18 / (157 + 71)。

参考文献

この記事では、ウランと放射性同位体との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »