ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

インピーダンスと伝送線路

ショートカット: 違い類似点ジャカード類似性係数参考文献

インピーダンスと伝送線路の違い

インピーダンス vs. 伝送線路

インピーダンス(impedance)は、圧と流の比を表す単語である。圧と流の積は仕事率である。. 伝送線路(でんそうせんろ、transmission line)は、電力信号をある地点から別の地点へ送信するための配線のことである。伝送路と同義であるが、伝送路、伝送線路の語は、日本語で広い意味で利用される(参照: 伝送路)。ここでは、その中で電信方程式に関連し、電子回路などで使用される、高周波信号を伝送するための配線に関する内容に関して述べる。なお、高周波信号を通す伝送線路は導波路(どうはろ、waveguide)とも呼ばれる。 一般に、ここで述べる伝送線路を構成するものとして、配線、同軸ケーブル、スタブ、光ファイバー、電力線、導波管などがある。.

インピーダンスと伝送線路間の類似点

インピーダンスと伝送線路は(ユニオンペディアに)共通で18ものを持っています: 同軸ケーブルデジタル回路アンテナインピーダンス整合オームジュール熱スミスチャート入力インピーダンス磁場絶縁体特性インピーダンス複素数長さ電場電圧電磁波電気回路電流

同軸ケーブル

同軸ケーブル(どうじくケーブル、Coaxial cable)とは、電気通信に使われる被覆電線の一種。略称はcoax。断面は同心円を何層にも重ねたような形状である。主に高周波信号の伝送用ケーブルとして無線通信機器や放送機器、ネットワーク機器、電子計測器などに用いられている。.

インピーダンスと同軸ケーブル · 伝送線路と同軸ケーブル · 続きを見る »

デジタル回路

デジタル回路(デジタルかいろ。英: digital circuit - ディジタル回路)は、2つの不連続な電位範囲を情報の表現に用いる電子回路で、論理回路の実現法のひとつである。電位帯内であれば信号の状態は同じものとして扱われる。信号レベルが公差、減衰、ノイズなどで若干変動したとしても、しきい値の範囲内ならば無視され、いずれかの状態として扱われる。 通常は2つの状態をとり、0Vに近い電圧と、十分にマージンを取った電源電圧より低い5Vや3V、1.2Vといった電圧で表される。これらはそれぞれ「Low」「High」、又は「L」「H」と表現される。一般には Low を0や偽、High を1や真に対応させることが多い(正論理)が、諸事情により逆に対応させる(負論理)こともある。以上はトランジスタベースの現在広く使われている回路の場合で、真空管による回路など、電圧や方式は他にも多種ある。.

インピーダンスとデジタル回路 · デジタル回路と伝送線路 · 続きを見る »

アンテナ

アンテナ(antenna)とは、高周波エネルギーを電波(電磁波)として空間に放射(送信)したり、逆に空間の電波(電磁波)を高周波エネルギーへ相互に変換(受信)する装置のことで、日本語だと空中線と呼ばれ、英語における本来の意味だと昆虫の触角を意味している。  アンテナは、その用途から送信用と受信用に分けられるが、可逆性を備えている物なら送受信の兼用が可能である。.

アンテナとインピーダンス · アンテナと伝送線路 · 続きを見る »

インピーダンス整合

インピーダンス整合(インピーダンスせいごう、impedance matching)とは、一例としては電気信号の伝送路において、送り出し側回路の出力インピーダンスと、受け側回路の入力インピーダンスを合わせることである。概念として、より広く力学一般に、音響その他の振動系に拡張できる。損失なく最大の効率で伝送を行うために、また特に高周波では整合がとれていない接続部分で反射が起きるため、整合するよう設計しなければならない。.

インピーダンスとインピーダンス整合 · インピーダンス整合と伝送線路 · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

インピーダンスとオーム · オームと伝送線路 · 続きを見る »

ジュール熱

ュール熱(ジュールねつ、Joule heat)は、(抵抗がある)導体に電流を流したときに生じる発熱であるジュール効果によって発生する熱エネルギー。.

インピーダンスとジュール熱 · ジュール熱と伝送線路 · 続きを見る »

スミスチャート

ミスチャート(データは未記入) 実用チャートでは外囲に波数比の目盛りがつく スミスチャート(Smith chart)とは、電子工学において伝送路のインピーダンス整合を設計する際に用いられる、複素インピーダンスを示す円形の図表である。1939年にRCAのエンジニアでアマチュア無線家(コールサイン 1ANB)でもあるフィリップ・スミスにより発明されたとされる。発明の理由をスミス氏は「計算尺が使えるようになった頃から、数学的な関係を図で表現することに興味を持っていた」と説明した。スミスの提案の2年前、日本無線電信株式会社の水橋東作は1937年(昭和12年)に発表した論文中第1図で、「反射係数\gammaのZ_(及Z_)に対する円線図」という正規化インピーダンスに対するスミスチャートと等価の計算図表を提案し、この「便利な図」を用いてグラフィカルにインピーダンスの計算ができることを示した。このため日本国内では、スミスチャートは水橋チャートまたは水橋-スミスチャートと呼称するのが妥当であるとの意見が存在する。 スミスチャートの基本は次の式で示される。 \Gammaは複素反射係数(散乱係数sまたはs_とも呼ばれる)、z_Lは伝送路の負荷の正規化インピーダンスで、Z_L/Z_0に等しい。ここで、 である。 この図自体は複素平面であり、水平軸は複素反射係数の実数部、垂直軸は虚数部を表す。また、各円上はインピーダンスの実数(抵抗)成分が一定、上下に曲がった曲線上(実は円弧)はインピーダンスの虚数(リアクタンス)成分が一定である。図の中心は負荷と伝送線路が整合された場合に対応する。図の周囲は100%の反射に対応し、周囲に書かれた角度は反射係数の位相を0から180度(半波長)で示す。 インピーダンスではなくアドミタンスを表すスミスチャートをアドミタンスチャートと言う。アドミタンスチャートはスミスチャートを180度回転して作成される。スミスチャートにアドミタンスチャートを重ね合わせたものをイミタンスチャートと言う。 コンピュータの時代になり、紙のスミスチャートが問題を解くために使われることは少なくなったが、高周波の複素インピーダンスを直感的にわかるかたちで示す方法として、非常に有用な方法である。また、電磁気学(特に電波工学)を学ぶ学生には、通常はこの図表を用いた演習問題が課されており、依然として重要な教育手段である。 ネットワークアナライザと呼ばれる計測器では、スミスチャートの形で結果を表示する。ネットワークアナライザは、現代の高周波回路の設計に欠かせない計測器である。.

インピーダンスとスミスチャート · スミスチャートと伝送線路 · 続きを見る »

入力インピーダンス

単純な電源と負荷の回路図 入力インピーダンス(にゅうりょくインピーダンス、Input Impedance)とは、ある電気回路や電子機器の、入力側から見たインピーダンスである。負荷インピーダンス(ふかインピーダンス、Load Impedance)、外部インピーダンス(がいぶインピーダンス、External Impedance)とも。.

インピーダンスと入力インピーダンス · 伝送線路と入力インピーダンス · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

インピーダンスと磁場 · 伝送線路と磁場 · 続きを見る »

絶縁体

絶縁体(ぜつえんたい、insulator)は、電気あるいは熱を通しにくい性質を持つ物質の総称である。.

インピーダンスと絶縁体 · 伝送線路と絶縁体 · 続きを見る »

特性インピーダンス

特性インピーダンス(とくせいインピーダンス、characteristic impedance、surge impedance)は、一様な伝播媒体を用いて交流電気エネルギーを伝達するときに伝播媒体中に発生する電圧と電流、あるいは電場と磁場の比である。一般には交流を伝送する分布定数線路および電磁波の媒体(真空及び誘電体)での概念である。 以下では、電気電子工学の慣例に従い、虚数単位として j を用いる。\omega.

インピーダンスと特性インピーダンス · 伝送線路と特性インピーダンス · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

インピーダンスと複素数 · 伝送線路と複素数 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

インピーダンスと長さ · 伝送線路と長さ · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

インピーダンスと電場 · 伝送線路と電場 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

インピーダンスと電圧 · 伝送線路と電圧 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

インピーダンスと電磁波 · 伝送線路と電磁波 · 続きを見る »

電気回路

電気回路(でんきかいろ、electric(al) circuit)は、抵抗器(抵抗)、インダクタ、コンデンサ、スイッチなどの電気的素子が電気伝導体でつながった電流のループ(回路)である。 電気回路は、電流の流れのための閉ループを持っていて、2つ以上の電気的素子が接続されている。 「回路」の語義的にはループになっているものだけであり、また電流は基本的にはその性質として、ループになっていなければ流れないものであるが、アンテナやアースのように開放端になっている部分も通例として含めている。対象が電子工学的(弱電)であるものは電子回路と言う。 例外的な分野の例ではあるが、主に数ギガヘルツの電磁波(電波)を伝播させる給電線である導波管をコンポーネント単位で、加工・細工するなどして、中空の導波管内を伝播する電磁波に直接作用させる形で構成した電気回路を立体回路と言う。これらは、基本的にループを構成せず、電気伝導体を介さない上記の電気回路の概念とは少し異なるものだが、電気回路の延長線上としてマイクロ波などの高周波領域であつかわれている。 導波管は金属の管であり、加工により通常の電気回路にあるような電気的素子である容量性(コンデンサ)、誘導性(インダクタ)、短絡(ショート)、抵抗減衰、分岐などを高周波領域で実現することが出来る。 これらは衛星通信やマイクロ波加熱、プラズマ生成など用途に応じて高出力(電力)で、かつ高周波の無線電波分野で用いられ、立体回路が構成される導波管は主に中空の方形導波管が多い。.

インピーダンスと電気回路 · 伝送線路と電気回路 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

インピーダンスと電流 · 伝送線路と電流 · 続きを見る »

上記のリストは以下の質問に答えます

インピーダンスと伝送線路の間の比較

伝送線路が78を有しているインピーダンスは、63の関係を有しています。 彼らは一般的な18で持っているように、ジャカード指数は12.77%です = 18 / (63 + 78)。

参考文献

この記事では、インピーダンスと伝送線路との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »