ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

インスリンとグルコース

ショートカット: 違い類似点ジャカード類似性係数参考文献

インスリンとグルコースの違い

インスリン vs. グルコース

インスリンの分子構造 インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。 生理作用としては、主として血糖を抑制する作用を有する。インスリンは脂肪組織や骨格筋を中心に存在するグルコーストランスポーターの一種であるGLUT4に作用し、そこから血中のグルコースを取り込ませることによって血糖値を下げる重要な役割を持つ。また骨格筋におけるアミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。 インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。 従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。. ルコース(glucose)は、分子式 C6H12O6を持つ単純な糖である。とも呼ばれる。グルコースは血糖として動物の血液中を循環している。糖は植物などに含まれる葉緑体において、太陽光からのエネルギーを使って水と二酸化炭素から光合成によって作られる。グルコースはのための最も重要なエネルギー源である。植物ではデンプン、動物ではグリコーゲンのようなポリマーとして貯蔵される。 グルコースは6個の炭素原子を含み、単糖の下位区分であるヘキソースに分類される。D-グルコースは16種類の立体異性体の一つである。D型異性体であるD-グルコースは、デキストロース(dextrose)とも呼ばれ、天然に広く存在するが、L-型異性体であるL-グルコースはそうではない。グルコースは乳糖や甘蔗糖、麦芽糖、セルロース、グリコーゲンなどといった炭水化物の加水分解によって得ることができる。グルコースは通常コーンスターチから商業的に製造されている。 グルコースは世界保健機関必須医薬品モデル・リストに入っている。Glucoseという名称は、甘いを意味するギリシア語γλυκός (glukós) 由来のフランス語から来ている。接尾辞の "-ose" は炭水化物を示す化学分類辞である。.

インスリンとグルコース間の類似点

インスリンとグルコースは(ユニオンペディアに)共通で14ものを持っています: 小腸リン酸化アルデヒドインスリングリコーゲンタンパク質糖尿病糖尿病網膜症糖尿病慢性期合併症糖尿病性神経障害糖尿病性腎症糖化反応炭水化物血糖値

小腸

小腸(しょうちょう、英Small intestine)とは、消化器のうち消化管の腸の一部である。小腸では消化と吸収を行う。.

インスリンと小腸 · グルコースと小腸 · 続きを見る »

リン酸化

リン酸化(リンさんか、phosphorylation)は、各種の有機化合物、なかでも特にタンパク質にリン酸基を付加させる化学反応である。この反応は、生化学の中で大きな役割を担っており、2013年2月現在、MEDLINEデータベースのタンパク質のリン酸化に関する記事は21万にも及んでいる。 リン酸化は、「ホスホリル化」とも呼ばれる。リン酸化を触媒する酵素は一般にキナーゼ (Kinase) と呼ばれ、特にタンパク質を基質とするタンパク質キナーゼを単にキナーゼと呼ぶことも多い。 なお、ATP生合成(ADPへのリン酸化)を単にリン酸化と呼ぶこともある(「酸化的リン酸化」等)。.

インスリンとリン酸化 · グルコースとリン酸化 · 続きを見る »

アルデヒド

最も単純なアルデヒド:ホルムアルデヒド アルデヒド (aldehyde) とは、分子内に、カルボニル炭素に水素原子が一つ置換した構造を有する有機化合物の総称である。カルボニル基とその炭素原子に結合した水素原子および任意の基(-R)から構成されるため、一般式は R-CHO で表される。任意の基(-R)を取り除いた部分をホルミル基(formyl group)、またはアルデヒド基という。アルデヒドとケトンとでは、前者は炭素骨格の終端となるが、ケトンは炭素骨格の中間点となる点で異なる。多くのアルデヒドは特有の臭気を持つ。.

アルデヒドとインスリン · アルデヒドとグルコース · 続きを見る »

インスリン

インスリンの分子構造 インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。 生理作用としては、主として血糖を抑制する作用を有する。インスリンは脂肪組織や骨格筋を中心に存在するグルコーストランスポーターの一種であるGLUT4に作用し、そこから血中のグルコースを取り込ませることによって血糖値を下げる重要な役割を持つ。また骨格筋におけるアミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。 インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。 従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。.

インスリンとインスリン · インスリンとグルコース · 続きを見る »

グリコーゲン

リコーゲンの構造 グリコーゲン (glycogen) あるいは糖原(とうげん)とは、多数のα-D-グルコース(ブドウ糖)分子がグリコシド結合によって重合し、枝分かれの非常に多い構造になった高分子である。動物における貯蔵多糖として知られ、動物デンプンとも呼ばれる。植物デンプンに含まれるアミロペクチンよりもはるかに分岐が多く、8~12残基に一回の分岐となる。直鎖部分の長さは12~18残基、分岐の先がさらに分岐し、網目構造をとる。英語の発音から「グライコジェン」と呼ばれることもある。 グリコーゲンは肝臓と骨格筋で主に合成され、余剰のグルコースを一時的に貯蔵しておく意義がある。糖分の貯蔵手段としてはほかに、脂肪とアミノ酸という形によるものがある。 脂肪酸という形でしかエネルギーを取り出せない脂肪や、合成分解に窒素代謝の必要なアミノ酸と違い、グリコーゲンは直接ブドウ糖に分解できるという利点がある。 ただし、脂肪ほど多くのエネルギーを貯蔵する目的には向かず、食後などの一時的な血糖過剰に対応している。 肝細胞は、食後直後に肝臓の重量の8 %(大人で100-120 g)までのグリコーゲンを蓄えることができる。本稿の「分解」の節で述べられているように肝臓に蓄えられたグリコーゲンのみが他の臓器でも利用することができる。骨格筋中ではグリコーゲンは骨格筋重量の1-2 %程度の低い濃度でしか貯蔵できない。筋肉は、体重比で成人男性の42%、同女性の36%を占める。このため体格等にもよるが大人で300g前後のグリコーゲンを蓄えることができる。 グリコーゲンの合成・分解は甲状腺、膵臓、副腎がそれぞれ血糖に応じてサイロキシン、グルカゴン及びインスリン、アドレナリンなどを分泌することで調整される。 なお、肝臓で合成されたグリコーゲンと骨格筋で合成されたそれとでは分子量が数倍異なり、前者のほうが大きい。.

インスリンとグリコーゲン · グリコーゲンとグルコース · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

インスリンとタンパク質 · グルコースとタンパク質 · 続きを見る »

糖尿病

糖尿病(とうにょうびょう、diabetes mellitus、DM)は、血糖値やヘモグロビンA1c(HbA1c)値が一定の基準を超えている状態をさす疾患である。東洋医学では消渇と呼ばれる。なお、腎臓での再吸収障害のため尿糖の出る腎性糖尿は別の疾患である。 糖尿病は高血糖そのものによる症状を起こすこともあるほか、長期にわたると血中の高濃度のグルコースがそのアルデヒド基の反応性の高さのため血管内皮のタンパク質と結合する糖化反応を起こし、体中の微小血管が徐々に破壊されていき、糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症などに繋がる。 糖尿病患者の90%は2型であり、これは予防可能な病気である。2型糖尿病の予防や軽減には、健康的な食事、適度な運動、適切な体重管理、禁煙が有効である。 世界における有病率は9%であり3億4,700万人、世界のDALYの19位を占め(1.3%)、2012年は150万人が糖尿病により死亡した。糖尿病による死者の8割は中低所得国であり、さらにWHOは2030年には世界第7位の死因となると推定している。.

インスリンと糖尿病 · グルコースと糖尿病 · 続きを見る »

糖尿病網膜症

糖尿病網膜症(とうにょうびょうもうまくしょう、Diabetic Retinopathy)とは、糖尿病の3大合併症の一つ(ICD-10:E10.3、E11.3等)。糖代謝異常に伴う眼の網膜などに各種変化をきたし、視力低下を認め、日本の中途失明の第2位を占める。なお糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害によって生じるものを、糖尿病の「三大合併症 (triopathy)」といわれる。 グルコースはそのアルデヒド基の反応性の高さからタンパク質を修飾する作用(糖化反応、メイラード反応参照)があり、グルコースによる修飾は主に細胞外のタンパク質に対して生じる。細胞内に入ったグルコースはすぐに解糖系により代謝されてしまう。インスリンによる血糖の制御ができず生体が高濃度のグルコースにさらされるとタンパク質修飾のために糖毒性が生じ、これが長く続くと糖尿病合併症とされる微小血管障害によって生じる糖尿病性網膜症を発症する。糖尿病性神経障害、糖尿病性腎症の発症も同様の機構による。 HbA1cが極めて高い場合、HbA1c 8.0%までは速やかに下げても良いが、それ以後はゆっくりと血糖値を下げて行く必要がある。急速で厳格な血糖値の低下によって逆に低血糖の発生や網膜症の進展・増悪をきたす場合があるためである。高血圧は高血糖に次ぐ網膜症のリスク要因である。.

インスリンと糖尿病網膜症 · グルコースと糖尿病網膜症 · 続きを見る »

糖尿病慢性期合併症

糖尿病慢性期合併症(とうにょうびょうまんせいきがっぺいしょう)とは、糖尿病に罹患してから数年を経て発症する合併症である。糖尿病で血糖をコントロールする目的は殆どはこれらの予防である。これらの合併症は多彩であるが、糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害によって生じるものを、糖尿病の「三大合併症(triopathy)」といわれる。これら3つの合併症を後述の血管障害、いわゆる大血管障害と対応させて、小血管障害という。.

インスリンと糖尿病慢性期合併症 · グルコースと糖尿病慢性期合併症 · 続きを見る »

糖尿病性神経障害

糖尿病性神経障害(とうにょうびょうせいしんけいしょうがい、diabetic neuropathy)は糖尿病患者にみられる種々の末梢神経障害の総称でインスリン作用の不足ないし慢性高血糖状態に起因する末梢神経障害である。高血糖によって生じる末梢神経の代謝障害と血管障害を二大因子として発症すると考えられ、ポリオール代謝亢進による神経内ソルビトールの蓄積、蛋白糖化、フリーラジカル、神経栄養因子の異常、細血管障害による神経虚血説などの仮説が提唱される。糖尿病性神経障害では多数の臨床病型が知られている。.

インスリンと糖尿病性神経障害 · グルコースと糖尿病性神経障害 · 続きを見る »

糖尿病性腎症

糖尿病性腎症(とうにょうびょうせいじんしょう)とは、糖尿病によって腎臓の糸球体が細小血管障害のため硬化して数を減じていく病気(ICD-10:E10.2、E11.2、等)である。.

インスリンと糖尿病性腎症 · グルコースと糖尿病性腎症 · 続きを見る »

糖化反応

糖化反応(とうかはんのう、Glycation)とは、フルクトースやグルコースなどの糖の分子が有するケトン基やアルデヒド基が酵素の働きなしにタンパク質または脂質などのアミノ残基やヒドロキシ基に結合する事を起点に起こる一連の化学反応の事である。特に食品科学分野を中心にメイラード反応とも呼ばれる。 糖化反応は生体内でも生体外でも起こりうる。酵素の触媒作用に制御されたタンパク質や脂質への糖の付加はグリコシル化反応として区別される。グリコシル化反応では特定の位置に糖が結合し、元の分子の働きを損なうことはないのに対して、糖化反応ではランダムに結合し、分子の働きを損なうこともある。フルクトースを用いた初期の研究によって、糖化反応の重要性が分かってきた。.

インスリンと糖化反応 · グルコースと糖化反応 · 続きを見る »

炭水化物

物製品は炭水化物を多く含んでいる。 炭水化物(たんすいかぶつ、carbohydrates、Kohlenhydrate)または糖質(とうしつ、glucides、saccharides)は、単糖を構成成分とする有機化合物の総称である。非常に多様な種類があり、天然に存在する有機化合物の中で量が最も多い。有機栄養素のうち炭水化物、たんぱく質、脂肪は、多くの生物種で栄養素であり、「三大栄養素」とも呼ばれている。 栄養学上は炭水化物は糖質と食物繊維の総称として扱われており、消化酵素では分解できずエネルギー源にはなりにくい食物繊維を除いたものを糖質と呼んでいる。三大栄養素のひとつとして炭水化物の語を用いるときは、主に糖質を指す。 炭水化物の多くは分子式が CHO で表され、Cm(H2O)n と表すと炭素に水が結合した物質のように見えるため炭水化物と呼ばれ、かつては含水炭素とも呼ばれた生化学辞典第2版、p.908 【糖質】。 後に定義は拡大し、炭水化物は糖およびその誘導体や縮合体の総称となり、分子式 CmH2nOn で表されない炭水化物もある。そのような例としてデオキシリボース C5H10O4 、ポリアルコール、ケトン、酸などが挙げられる。また、分子式が CmH2nOn ではあっても、ホルムアルデヒド (CH2O, m.

インスリンと炭水化物 · グルコースと炭水化物 · 続きを見る »

血糖値

血糖値(けっとうち、blood sugar concentration / blood glucose level)とは、血液内のグルコース(ブドウ糖)の濃度である。健常なヒトの場合、空腹時血糖値はおおよそ80-100mg/dL程度であり、食後は若干高い値を示す。 ヒトの血糖値は、血糖値を下げるインスリン、血糖値をあげるグルカゴン、アドレナリン、コルチゾール、成長ホルモンといったホルモンにより、非常に狭い範囲の正常値に保たれている。体内におけるグルコースはエネルギー源として重要である反面、高濃度のグルコースは糖化反応を引き起こし微小血管に障害を与え生体に有害であるため、インスリンなどによりその濃度(血糖)が常に一定範囲に保たれている。.

インスリンと血糖値 · グルコースと血糖値 · 続きを見る »

上記のリストは以下の質問に答えます

インスリンとグルコースの間の比較

グルコースが81を有しているインスリンは、89の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は8.24%です = 14 / (89 + 81)。

参考文献

この記事では、インスリンとグルコースとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »