ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

イプシロン-デルタ論法と無限

ショートカット: 違い類似点ジャカード類似性係数参考文献

イプシロン-デルタ論法と無限の違い

イプシロン-デルタ論法 vs. 無限

ε-δ 論法(イプシロンデルタろんぽう、(ε, δ)-definition of limit)は、解析学において、(有限な)実数値のみを用いて極限を議論する方法である。. 無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

イプシロン-デルタ論法と無限間の類似点

イプシロン-デルタ論法と無限は(ユニオンペディアに)共通で7ものを持っています: 実数微分積分学無限小超準解析極限有限数列

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

イプシロン-デルタ論法と実数 · 実数と無限 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

イプシロン-デルタ論法と微分積分学 · 微分積分学と無限 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

イプシロン-デルタ論法と無限小 · 無限と無限小 · 続きを見る »

超準解析

は、あるいは無限小数の意味および論理的妥当性に関する哲学的論争を孕んでいる。これらの論争の標準的な解決策は、微分積分学における操作を無限小ではなくイプシロン-デルタ論法によって定義することである。超準解析(nonstandard analysis)は代わりに論理的に厳格な無限小数の概念を用いて微分積分学を定式化する。Nonstandard Analysisは直訳すれば非標準解析学となるが、齋藤正彦が超準解析という訳語を使い始めたため、そのように呼ばれるようになった。無限小解析(infinitesimal analysis)という言葉で超準解析を意味することもある。 超準解析は1960年代に数学者アブラハム・ロビンソンによって創始せられた。 彼は次のように記述している: 無限に小さいあるいは無限小の量という概念は我々の直観に自然に訴えかけるように見える。何れにせよ、無限小の使用は、微分学・積分学の黎明期において、広く普及した。相異なる2つの実数の差が無限に小さくなることはないという 異論に対して、ゴットフリート・ライプニッツは、無限小の理論は理想的数――それは実数と比較して無限に小さかったり無限に大きかったりするものであるが、後者(訳注:実数)と同じ性質を有する――の導入を含意するものであると主張した。 ロビンソンはこのライプニッツのはの先駆けであるとしている。ロビンソンは次のように続ける: しかしながら、彼も、彼の弟子たちや後継者たちも、このようなシステムに繋がる合理的な進展(訳注:そのような原理を合理化するもの)を得なかった。その結果、無限小の理論は徐々に評判を落としてゆき、最終的には古典的な極限の理論に取って代わられた。Robinson, A.: Non-standard analysis.

イプシロン-デルタ論法と超準解析 · 無限と超準解析 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

イプシロン-デルタ論法と極限 · 極限と無限 · 続きを見る »

有限

有限(ゆうげん、finite)とは、無限ではないことである。.

イプシロン-デルタ論法と有限 · 有限と無限 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

イプシロン-デルタ論法と数列 · 数列と無限 · 続きを見る »

上記のリストは以下の質問に答えます

イプシロン-デルタ論法と無限の間の比較

無限が70を有しているイプシロン-デルタ論法は、25の関係を有しています。 彼らは一般的な7で持っているように、ジャカード指数は7.37%です = 7 / (25 + 70)。

参考文献

この記事では、イプシロン-デルタ論法と無限との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »