Google PlayストアでUnionpediaアプリを復元するために作業中です
出ていきます入ってきます
🌟ナビゲーションを改善するためにデザインを簡素化しました!
Instagram Facebook X LinkedIn

アルゴン

索引 アルゴン

アルゴン(argon)は原子番号18番の元素である。元素記号は Ar。原子量は39.95。第18族元素(貴ガス)、第3周期元素の一つ。

目次

  1. 82 関係: 原子番号原子量反磁性同位体塩素太陽宇宙岩石三重点人工元素二酸化炭素地球地球の大気地殻ノーベル化学賞ノーベル物理学賞チタンネオンヨウ化セシウムレイリー男爵ヘンリー・キャヴェンディッシュテクニカルダイビングフッ化水素フィンランドドミトリ・メンデレーエフドライスーツベータ崩壊分析化学周期表アルゴンフッ素水素化物アーク溶接ウルトラマン80ウィリアム・ラムゼーオクテット則カリウムカリウム40ガスクロマトグラフィーギリシア語クリプトンケルビンケイ素シカゴ大学出版局ジョン・ウィリアム・ストラット (第3代レイリー男爵)元素元素合成元素記号固体火星空気窒素... インデックスを展開 (32 もっと) »

  2. 貴ガス

原子番号

原子番号(げんしばんごう、)とは、核種を区別する量の一つでB.ポッフ ''et al.'', pp.13-14、原子核の中にある陽子の個数である。電荷を帯びていない中性原子においては、原子中の電子の数に等しい。通常は記号 で表されるが、これは「数」や「番号」を表す の頭文字から来ている。現在、元素の正式名称が決定している最大の原子番号はオガネソンの118である。 原子番号は元素の種類と対応しており、元素記号から原子番号が一意に決まるため、通常書くことはないが、明示する場合は元素記号の左に下付き添え字で書く。例えば、炭素の場合は で表す。

見る アルゴンと原子番号

原子量

原子量(げんしりょう、atomic mass)または相対原子質量(そうたいげんししつりょう、relative atomic mass)とは、「一定の基準によって定めた原子の質量」原子量、『理化学事典』、第5版、岩波書店。ISBN 978-4000800907。である。 その基準は歴史的変遷を経ており、現在のIUPACの定義によれば1個の原子の質量の原子質量単位に対する比であり、Eを原子や元素を表す記号として Ar(E) という記号で表される。すなわち12C原子1個の質量に対する比の12倍である。元素に同位体が存在する場合は核種が異なるそれぞれの同位体ごとに原子の質量が異なるが、ほとんどの元素において同位体存在比は一定なので、原子量は存在比で補正された元素ごとの平均値として示される。同位体存在比の精度が変動するため、公示されている原子量の値や精度も変動する。

見る アルゴンと原子量

反磁性

反磁性(はんじせい、diamagnetism)とは、外部磁場をかけたとき(磁石を近づけるなど)、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである。磁場をかけた場合にのみこの性質が現れ、反磁性体は自発磁化を示さない。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 その微視的機構は、原子中の電子へ外部磁場を与えると、電子に外部磁場を打ち消す回転運動が励起され、逆向きの磁化が生じることによる。したがって反磁性は全ての物質が持つ性質である。

見る アルゴンと反磁性

同位体

同位体(どういたい、isotope;アイソトープ)とは、同一原子番号を持つものの中性子数(質量数 A - 原子番号 Z)が異なる核種の関係をいう。この場合、同位元素とも呼ばれる。歴史的な事情により核種の概念そのものとして用いられる場合も多い。 同位体は、放射能を持つ放射性同位体 (radioisotope) とそうではない安定同位体 (stable isotope) の2種類に分類される。

見る アルゴンと同位体

塩素

塩素(えんそ、chlorine)は原子番号17の元素。元素記号はCl。原子量は35.45。ハロゲン元素のひとつ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の刺激臭を持つ黄緑色の気体で、腐食性と強い毒を持つ。

見る アルゴンと塩素

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。地球も含まれる太陽系の物理的中心であり、太陽系の全質量の99.8 %を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp.

見る アルゴンと太陽

宇宙

宇宙(うちゅう)について、本項では漢語(およびその借用語)としての「宇宙」と、「宇宙」と漢語訳される様々な概念を扱う。

見る アルゴンと宇宙

岩石

岩石(がんせき)とは、世間一般には、岩や石のこと。石の巨大なもの、特に無加工で表面がごつごつしたものを岩(いわ)と呼び、巌、磐とも書く。

見る アルゴンと岩石

三重点

純物質の三重点(さんじゅうてん、triple point)とは、その物質の三つの相が共存して熱力学的平衡状態にある温度と圧力である。三相を指定しないで単に三重点というときには、気相、液相、固相の三相が共存して平衡状態にあるときの三重点を指す。水を例にとるならば、水蒸気、水、氷が共存する温度、圧力が水の三重点である。

見る アルゴンと三重点

人工元素

人工元素(じんこうげんそ)は、人工的に合成された元素(同位体)の総称である。人工放射性元素とも呼ばれる。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素はほぼすべて人工元素である。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。

見る アルゴンと人工元素

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、炭素の酸化物の一つで、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」とも呼ばれる。地球温暖化対策の文脈などで、「カーボンフリー」「カーボンニュートラル」など「カーボン」が使われることがあるが、これは二酸化炭素由来の炭素を意味する。 二酸化炭素は温室効果を持ち、地球の気温を保つのに必要な温室効果ガスの一つである。しかし、濃度の上昇は地球温暖化の原因となる。 地球大気中の二酸化炭素をはじめ地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸や炭酸水と呼ばれる。また、金星、火星は大気の主成分が二酸化炭素であることが知られている。 多方面の産業で幅広く使われている(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素(一酸化二窒素)、フロンガスなどが変換される。日本では、2014年度で13.6億トンが総排出量として算出された。

見る アルゴンと二酸化炭素

地球

地球(ちきゅう、The Earth)は太陽系の惑星の1つ広辞苑 第五版 p. 1706.。水星、金星に次いで太陽から3番目に近いため太陽系第3惑星と言われる。表面に水、空気中に酸素を大量に蓄え、人類を含む多種多様な生命体が生存することを特徴とする惑星である。

見る アルゴンと地球

地球の大気

上空から見た地球の大気の層と雲 国際宇宙ステーション(ISS)から見た日没時の地球の大気。対流圏は夕焼けのため黄色やオレンジ色に見えるが、高度とともに青色に近くなり、さらに上では黒色に近くなっていく。 MODISで可視化した地球と大気の衛星映像 大気の各層の模式図(縮尺は正しくない) とは、地球の表面を層状に覆っている気体のことYahoo! Japan辞書(大辞泉)。地球科学の諸分野で「地表を覆う気体」としての大気を扱う場合は「大気」と呼ぶが、一般的に「身近に存在する大気」や「一定量の大気のまとまり」等としての大気を扱う場合は「空気」と呼ぶ。 大気が存在する範囲をYahoo! Japan辞書(大辞泉) 、その外側を宇宙空間という。大気圏と宇宙空間との学術的な境界は、何を基準に考えるかによって幅があるが、一般的には、大気がほとんど無くなる高度100kmのカーマン・ラインより外側を宇宙空間とする。

見る アルゴンと地球の大気

地殻

地殻(ちかく、crust)は、天体の内部の層の一つ。

見る アルゴンと地殻

ノーベル化学賞

は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された5部門のうちの一つ。自然科学分野で最も権威ある賞とされる。この賞は化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 他方で平和賞ほどではないが、戦争で化学兵器の研究に関わった化学者が受賞したことで大きな論争になったこともある(フリッツ・ハーバーなど)。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神(科学のゲニウス)が持ち上げて素顔を眺めている姿がデザインされている(物理学賞と共通)。

見る アルゴンとノーベル化学賞

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された5部門のうちの一つで、自然科学分野で権威ある賞。物理学の分野において重要な発見を行った人物に授与される。 対象となる分野は大きく分けて、天文学や天体物理学、原子物理学、素粒子物理学の3分野であるが、気象学など地球科学からの受賞もある。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神(科学のゲニウス)が持ち上げる素顔を眺めている姿がデザインされている(化学賞と共通)。

見る アルゴンとノーベル物理学賞

チタン

チタン(Titan 、titanium 、titanium、鈦)は、原子番号22の元素。元素記号はTi。第4族元素、遷移元素のひとつ。チタニウムとも呼ばれる。

見る アルゴンとチタン

ネオン

ネオン(neon 、néon)は、原子番号10の元素である。元素記号はNe。原子量は20.180。

見る アルゴンとネオン

ヨウ化セシウム

ヨウ化セシウム(ヨウかセシウム、cesium iodide または caesium iodide)は、組成式が CsI と表される無機化合物。アルカリ金属であるセシウムとハロゲンであるヨウ素からなる金属ハロゲン化合物である。科学分野での用途として、ヨウ化セシウムがシンチレータ(放射線が当たることによって蛍光を示す性質を持つ物質)である性質を利用し、エックス線蛍光倍増管・ガンマ線検出用単結晶や極端紫外線(EUV)の撮像素子などに用いられる。簡易放射線計測器の「はかるくん」にも使われている。 放射性ヨウ素が原子炉内で生成される場合、炉心から格納容器内へは主にCsI として放出され、ほとんどが水に吸収される。

見る アルゴンとヨウ化セシウム

レイリー男爵

レイリー男爵(Baron Rayleigh)は、連合王国貴族の男爵位。シャーロット・ストラットが1821年に叙されたのに始まる。

見る アルゴンとレイリー男爵

ヘンリー・キャヴェンディッシュ

ヘンリー・キャヴェンディッシュ(Henry Cavendish、1731年10月10日 – 1810年2月24日)は、イギリスの自然哲学者、化学者、物理学者。

見る アルゴンとヘンリー・キャヴェンディッシュ

テクニカルダイビング

テクニカルダイビング()とは、オーバーヘッド環境(閉鎖環境)や減圧(仮想閉鎖環境)を伴う潜水のことである。

見る アルゴンとテクニカルダイビング

フッ化水素

フッ化水素(フッかすいそ、弗化水素、)とは、水素とフッ素からなる無機化合物で、分子式が HF と表される無色の気体または液体。水溶液はフッ化水素酸 と呼ばれ、フッ酸とも俗称される。毒物及び劇物取締法の医薬用外毒物に指定されている。

見る アルゴンとフッ化水素

フィンランド

フィンランド共和国(フィンランドきょうわこく、Suomen tasavalta、Republiken Finland)、通称フィンランドは、北ヨーロッパに位置する共和制国家。首都はヘルシンキ。バルト海東岸に位置する国の一つであり、国境は、北はノルウェー、西はスウェーデン、東はロシアと接する。南はフィンランド湾を挟みエストニアと相対している。 国体の変化が激しい歴史を持つ国家であり、王制から共和制へ変換された国々の一国として知られている。ロシア帝国が第二次ロシア・スウェーデン戦争後にフィンランドを併合してフィンランド大公国にした1809年まで、スウェーデン王国に属していた。後に、ロシア帝国がロシア革命で崩壊したことで1917年に独立を果たした。独立後、フィンランドでは4つの戦争が行われた。1918年のフィンランド内戦、ロシア革命で成立したソビエト連邦との冬戦争(1939年~1940年)、第二次世界大戦(独ソ戦)に伴うソ連との継続戦争(1941年~1944年)とソ連との講和後のナチス・ドイツとのラップランド戦争(1944年~1945年)である。それぞれの戦争において、共和国の軍隊は、軍の最高司令官であるマンネルヘイム元帥によって率いられた。冬戦争と継続戦争により幾らかの土地をソ連に奪われるも、ソ連に併合されたバルト三国と異なり独立を維持した。

見る アルゴンとフィンランド

ドミトリ・メンデレーエフ

ドミトリ・イヴァーノヴィチ・メンデレーエフ(;、1834年1月27日(グレゴリオ暦2月8日)- 1907年1月20日(グレゴリオ暦2月2日))は、ロシアの化学者である。元素周期表を作成し、それまでに発見されていた元素を並べ周期的に性質を同じくした元素が現れることを確認した。この周期性に基づき、当時発見されていなかった数々の元素の存在を予言した。101番元素メンデレビウムは彼の名を由来にした元素である。

見る アルゴンとドミトリ・メンデレーエフ

ドライスーツ

ドライスーツとは、内部に水が浸入しない保護スーツである(内部に水が浸入するものは、ウェットスーツという)。 汚染水域等での潜水時に着用される、加硫ゴム生地を用いたフード一体型のシェルドライスーツ。

見る アルゴンとドライスーツ

ベータ崩壊

ベータ崩壊(ベータほうかい、beta decay)とは、原子核の放射性崩壊の一種で、放射線としてベータ線(電子)と反電子ニュートリノとを放出する。ベータ壊変(ベータかいへん)ともいう。 「中性子 ⇄ 陽子+電子+反電子ニュートリノ」の遷移過程の右方向への遷移である。逆方向への遷移は電子捕獲(逆ベータ崩壊)と呼ばれる。

見る アルゴンとベータ崩壊

分析化学

ガスクロマトグラフィー実験室 分析化学(ぶんせきかがく、analytical chemistrySkoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2013). Fundamentals of analytical chemistry. Nelson Education.Harvey, D. (2000). Modern analytical chemistry (Vol. 1). New York: McGraw-Hill.Fifield, F.

見る アルゴンと分析化学

周期表

周期表(しゅうきひょう、)は、物質を構成する基本単位である元素を、周期律を利用して並べた表である。元素を原子番号の順に並べたとき、物理的または化学的性質が周期的に変化する性質を周期律といい、周期表では性質の類似した元素が縦に並ぶように配列されている。「周期律表」や「元素周期表」などとも呼ばれる。

見る アルゴンと周期表

アルゴンフッ素水素化物

アルゴンフッ素水素化物(アルゴンフッそすいそかぶつ、argon fluorohydride)とは知られている唯一のアルゴン(Ar)化合物(2006年現在)である。低温マトリックス中で生成される。 2000年8月24日、フィンランドの科学者 Markku Räsänen によりネイチャー誌上で合成法とその赤外スペクトルが報告された。 分子式は HArF。

見る アルゴンとアルゴンフッ素水素化物

アーク溶接

アーク溶接(アークようせつ、英語:arc welding)とは、空気(気体)中の放電現象(アーク放電)を利用して、同じ金属同士をつなぎ合わせる溶接方法である。アーク溶接の用途は広く、自動車、鉄道車両、船舶、航空機、建築物、建設機械など、あらゆる金属構造物に一般的に使われている。母材は鉄鋼が多いが、アルミニウムやチタンなどほかの金属にも利用される。

見る アルゴンとアーク溶接

ウルトラマン80

『ウルトラマン80』(ウルトラマンエイティ)は、1980年(昭和55年)4月2日から1981年(昭和56年)3月25日までTBS系列で毎週水曜19:00 - 19:30(JST)に全50話が放送されたTBS・円谷プロダクション製作の特撮テレビドラマ、また、その劇中に登場するヒーローの名。ウルトラシリーズ通算第9作であり、第3期ウルトラシリーズの2作目にあたる。

見る アルゴンとウルトラマン80

ウィリアム・ラムゼー

バニティ・フェア』誌に掲載されたラムゼーの漫画風イラスト ウィリアム・ラムゼー(William Ramsay, 1852年10月2日 – 1916年7月23日)は、スコットランド出身の化学者である。1904年に空気中の貴ガスの発見によりノーベル化学賞を受賞した。なお、同年のノーベル物理学賞は希ガスであるアルゴンを発見した功績によりジョン・ウィリアム・ストラット(レイリー卿)が受賞している。

見る アルゴンとウィリアム・ラムゼー

オクテット則

オクテット則(オクテットそく、Octet rule)は原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則。オクテット説(-せつ)、八隅説(はちぐうせつ)ともいう。 第二周期の元素や第三周期のアルカリ金属、アルカリ土類金属までにしか適用できないが、多くの有機化合物に適用できる便利な規則である(→18電子則)。ただし、カルボカチオンや無機化合物を中心とする多くの例外も存在する。

見る アルゴンとオクテット則

カリウム

カリウム(Kalium 、)は原子番号19番の元素である。ポタシウム(剥荅叟母、 ) 、加里(カリ)ともいう。元素記号はK。原子量は39.10。アルカリ金属、典型元素のひとつ。生物にとって必須元素である。

見る アルゴンとカリウム

カリウム40

カリウム40 (Potassium-40,40K) は天然カリウム中に存在するカリウムの同位体である。陽子数(19)および中性子数(21)共に奇数である奇奇核で、核種として不安定な放射性同位体である。半減期は12.48億年。 地球上における絶対量が多いことにより地球上における主な自然放射線元の1つとなっており、またカリウムが動植物の必須元素であることから生体の内部被曝の最大の要因ともなっている。

見る アルゴンとカリウム40

ガスクロマトグラフィー

ガスクロマトグラフィー (Gas Chromatography, GC) はクロマトグラフィーの一種であり、気化しやすい化合物の同定・定量に用いられる機器分析の手法である。サンプルと移動相が気体であることが特徴である。ガスクロマトグラフィーに用いる装置のことをガスクロマトグラフという。また、ガスクロとも呼称される。 測定感度は高感度な検出器を用いれば市販品でも数十fg/s(フェムトグラム毎秒)オーダーレベルにまで及ぶ。各種の科学分野で微量分析技術として汎用されている。

見る アルゴンとガスクロマトグラフィー

ギリシア語

(Ελληνικά、または Ελληνική γλώσσα)は、インド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。 単独でヘレニック語派(ギリシア語派)を形成する。 ギリシャ共和国やキプロス共和国、イスタンブールの居住区などで使用されており、話者は約1200万人。 また、ラテン語とともに学名や各分野の専門用語にも使用されている。 漢字に転写し希臘語、さらにそれを省略し希語などと記される なお、ヘブライ語(希伯来語)も希語と省略しうるが、現状、希語は、もっぱらギリシア語の意味で使われる。。 諸地域における共通言語の一つとして3000年以上もの間、日常言語、あるいは文学作品や公式記録、外交文書の言語として重要な役割を果たしている。

見る アルゴンとギリシア語

クリプトン

クリプトン(krypton)は原子番号36の元素。元素記号は Kr。貴ガス元素の一つ。

見る アルゴンとクリプトン

ケルビン

ケルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) における7個のSI基本単位の一つである。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるケルビン川から取られている。

見る アルゴンとケルビン

ケイ素

ケイ素(けいそ、珪素、硅素、silicon、silicium)は、原子番号14の元素である。元素記号はSi。原子量は28.1。「シリコン」とも呼ばれる。

見る アルゴンとケイ素

シカゴ大学出版局

シカゴ大学出版局(シカゴだいがくしゅっぱんきょく、University of Chicago Press)は、シカゴ大学が運営する出版局。大学が運営する出版局ではアメリカ合衆国で最古かつ最大規模。これまで1万以上の著作を出版している。2016年現在、11000以上が出版、5000以上の著作が販売されている。

見る アルゴンとシカゴ大学出版局

ジョン・ウィリアム・ストラット (第3代レイリー男爵)

第3代レイリー男爵ジョン・ウィリアム・ストラット(Baron Rayleigh、1842年11月12日 - 1919年6月30日)は、イギリスの物理学者。 レイリー卿(レーリー卿あるいはレーリ卿とも、Lord Rayleigh)としても知られる。

見る アルゴンとジョン・ウィリアム・ストラット (第3代レイリー男爵)

元素

現代の化学での元素の説明。19世紀後半にその原型が提唱された周期表は、元素の種類と基本的な特徴や関係をその周期的な配列の中で説明する表である。 元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。

見る アルゴンと元素

元素合成

元素合成(げんそごうせい、Nucleosynthesis)とは、核子(陽子と中性子)から新たに原子核を合成する事象である。原子核合成、核種合成とも。 例えば、水素と重水素を非常に強い力によってぶつけると、その二つの元素が合成されてヘリウムが作られる。 ビッグバン理論によれば、核子はビッグバン後宇宙の温度が約200MeV(約2兆K)まで冷えたところで、クォークグルーオンプラズマから生成された。数分後、陽子と中性子からはじまり、リチウム7とベリリウム7までの原子核が生成されるが、リチウム7やベリリウム7は崩壊し、宇宙に多く貯蔵されるには至らない。ヘリウムより重い元素の合成は概ね恒星での核融合や核分裂により生じる。また、鉄より重い元素はほとんどが超新星爆発の圧力によってのみ生成される。

見る アルゴンと元素合成

元素記号

現在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう、element symbol) とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。1、2、ないし3文字のアルファベットが用いられるとされているが、現在使われている元素記号はすべて1文字または2文字からなる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。

見る アルゴンと元素記号

固体

固体インスリンの単結晶形態 は、物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。 液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。 固体を扱う物理学は固体物理学と呼ばれ、物性物理学の一分野である。また物質科学はそもそも、強度や相変化といった固体の性質を扱う学問であり、固体物理学と重なる部分が多い。さらに固体化学の領域もこれらの学問と重なるが、特に新しい物質の開発(化学合成)に重点が置かれている。

見る アルゴンと固体

火星

火星(かせい、Mars、マールス、Mars、マーズ、Άρης、アレース)は、太陽系の太陽に近い方から4番目の惑星で、太陽系内では水星より大きく2番目に小さい惑星である。英語では火星はローマ神話の軍神の名を持ち、しばしば「赤い惑星(Red Planet)」と呼ばれる。

見る アルゴンと火星

空気

空気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。

見る アルゴンと空気

窒素

窒素(ちっそ、nitrogen、azote、Stickstoff)は、原子番号7の元素である。元素記号はN。原子量は14.007。第15族元素、第2周期元素。 地球の大気中に安定した気体として存在するほか、生物に欠かせないアミノ酸、アンモニアなど様々な化合物を構成する【直談 専門家に聞く】窒素排出、環境汚染の原因に/安く回収・再利用目指す『日経産業新聞』2021年11月8日イノベーション面。ハーバー・ボッシュ法によりアンモニアの量産が可能になって以降、人間により工業的に産生された窒素肥料や窒素酸化物が大量に投入・排出され、自然環境にも大きな影響を与えている。 一般に「窒素」という場合は、窒素の単体である窒素分子(N2)を指すことが多く、本項でもそのように用いられる場合がある。本項では窒素分子についても記載する。

見る アルゴンと窒素

第18族元素

第18族元素(だいじゅうはちぞくげんそ)とは、元素周期表における第18族に属する元素、すなわちヘリウム・ネオン・アルゴン・クリプトン・キセノン・ラドンを指す族名である。なお、これらのうちで安定した核種を持つのは、第1周期元素のヘリウムから第5周期元素のキセノンまでであり、ラドンとオガネソンは放射性元素である。貴ガス(きガス、noble gas)と呼ばれる。英語表記の変更があった2005年までは希ガス・稀ガス(きガス、rare gas)と呼ばれていた。

見る アルゴンと第18族元素

第3周期元素

第3周期元素 (だいさんしゅうきげんそ) は元素の周期表のうち、第3周期にある元素を指す。 以下にその元素を示す。電子配置での はネオン殻で、1s22s22p6 を表す。 名称 | style。

見る アルゴンと第3周期元素

紫外線

UVインデックス(紫外線指数) 紫外線(しがいせん、ultraviolet)は、波長が10 - 400 nm nm はナノメートルで、10-9 m に相当する。、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。可視光線の紫色の外側という意味で紫外線という。1960年代(昭和35年)以前の呼び名は菫外線(きんがいせん)とも。また、英語の からと省略される。

見る アルゴンと紫外線

真空管

5球スーパーラジオに使われる代表的な真空管(mT管) 左から6BE6、6BA6、6AV6、6AR5、5MK9 真空管(しんくうかん、vacuum tube、radio valve)とは、内部を高度な真空とし、電極を封入した中空の管(管球)のことである。陰極から陽極に流れる電子流を制御することによって増幅、検波、整流、発振などを行うことができる。 電子管electron tubeあるいは熱電子管thermionic valveなどと呼ばれる。

見る アルゴンと真空管

面心立方格子構造

面心立方格子構造(めんしんりっぽうこうしこうぞう、face-centered cubic, fcc)は、ブラベー格子の一種。単位格子の各頂点および各面の中心に原子が位置する。立方最密充填構造(りっぽうさいみつじゅうてんこうぞう、cubic close-packed, ccp)とも呼ばれる。面心立方格子構造を持つ単体金属は多い。

見る アルゴンと面心立方格子構造

誘導結合プラズマ

誘導結合プラズマ(ゆうどうけつごうプラズマ、Inductively Coupled Plasma、略称:ICP)は、電子を高周波誘導コイルで加速し気体ガスと衝突させることでガスの一部を電離させ、その電離と電子密度の増加が連鎖することで得られる高温のプラズマである。誘導結合プラズマの温度は10000K程度である。。

見る アルゴンと誘導結合プラズマ

講談社

株式会社講談社(こうだんしゃ、)は、東京都文京区音羽に本社を置く日本の大手総合出版社。系列企業グループ「音羽グループ」の中核企業。 「週刊少年マガジン」「モーニング」「週刊現代」「FRIDAY」「ViVi」「群像」など30を超える雑誌のほか、文芸書からコミック、実用書や学術書まで多様な書籍を発行している。 小学館・集英社(両社とも一ツ橋グループに所属)と並ぶ日本国内の出版業界最大手であり、一時は年間売上高が2000億円を超えていたこともあった。しかし、近年はいわゆる「出版不況」により売上が減少、2002年(平成14年)には戦後初の赤字決算となった。近年は紙の出版物への依存体質の改善に注力し、2015年(平成27年)以降は電子書籍などのデジタル関係、および国際や権利関係の収入が急増したことにより増収増益が続いている。

見る アルゴンと講談社

質量数

質量数(しつりょうすう、)とは、核種を区別する量の一つでB.ポッフ ''et al.'', p.14、原子核を構成する核子の個数、すなわち陽子と中性子の個数の合計である『岩波理化学辞典』、項目「質量数」。通常は記号 で表される。 同位体を区別するときに用いられることが多く、元素記号の左肩に示す。たとえば、質量数12の炭素の場合は で表す。 原子番号は同じであるが質量数が異なる原子は原子核を構成する中性子の数が異なり、同位体と呼ばれる。これに対して同じ質量数であるが原子番号(すなわち陽子数)が異なる原子を同重体と呼び、中性子数が同じであるが原子番号が異なるものを同中性子体(同調体)という。

見る アルゴンと質量数

超新星

ケプラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、、スーパーノヴァ)は、大質量の恒星や近接連星系の白色矮星が起こす大規模な爆発(超新星爆発)によって輝く天体のこと。

見る アルゴンと超新星

蒸留

実験室レベルにおける典型的な蒸留装置の模式図。1,熱源(ガスバーナー)、2,蒸留用フラスコ(枝付きフラスコ)、3,ト字管、4,温度計、5,冷却器、6,冷却水(入)、7,冷却水(出)8,蒸留液を溜めるフラスコ、9,真空ポンプ、10,真空用アダプター 蒸留(じょうりゅう、蒸餾、蒸溜、Distillation)とは、液体を加熱して、出てくる気体を冷やして再び液体にして集める方法をいう。一般に、混合物を一度蒸発させ、後で再び凝縮させることで、沸点の異なる成分を分離・濃縮する操作で利用されることが多い。この場合は、通常、目的成分が常温で液体であるか、融点が高々100℃程度の固体の場合に用いられる。共沸しない混合物であれば、蒸留によりほぼ完全に単離及び精製することが可能であり、この操作を特に分留という。

見る アルゴンと蒸留

自然

自然(しぜん、φύσις natura nature)について解説する。

見る アルゴンと自然

長さの比較

長さの比較(ながさのひかく)では、長さの比較ができるよう、長さを昇順に表にする。

見る アルゴンと長さの比較

酸素

酸素(さんそ、oxygen、oxygenium、oxygène、Sauerstoff)は、原子番号8の元素である。元素記号はO。原子量は16.00。第16族元素、第2周期元素のひとつ。

見る アルゴンと酸素

蛍光灯

蛍光灯(けいこうとう)または蛍光ランプ(fluorescent lamp)、蛍光管(けいこうかん)は、放電により飛び出した電子が、ガラス管内に封入された水銀の原子に衝突することで発生した紫外線を、ガラス管内面に塗布した蛍光体に当てて可視光線に変換する光源である。 方式は熱陰極管(HCFL; hot cathode fluorescent lamp)方式と冷陰極管(CCFL; cold cathode fluorescent lamp)方式とに大別される。一般照明用に使用される蛍光灯は一部の例外を除いてほとんどが熱陰極管方式である。冷陰極管方式は液晶モニターのバックライト用途として1990年代に開発が進み、2000年代には液晶テレビなどで大規模に使用されたが、一般照明用としての普及が進む前にLEDの普及期に入ったため、ほとんど利用されないまま淘汰された。

見る アルゴンと蛍光灯

電子捕獲

電子捕獲(でんしほかく、electron capture、略称:EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK殻の電子であるが、L殻やM殻の電子が捕獲される場合もある。

見る アルゴンと電子捕獲

電球

電球(でんきゅう、英語:light bulb)とは、殻内のフィラメントや他の発光素子に電流を流して発光させる、電気による光源(ランプ)である。

見る アルゴンと電球

SHOW BY ROCK!!

『SHOW BY ROCK!!』(ショウ・バイ・ロック)は、サンリオによるバンドがテーマのキャラクタープロジェクト。主な略称は「SB69」など。

見る アルゴンとSHOW BY ROCK!!

東京大学出版会

一般財団法人東京大学出版会(とうきょうだいがくしゅっぱんかい、英称:University of Tokyo Press)は、東京大学の出版部に当たる法人。東京大学総長を会長とし、東京大学の活動に対応した書籍の出版を主に行う。

見る アルゴンと東京大学出版会

水銀灯

高圧水銀灯 水銀灯(すいぎんとう)は、照明の一種。ガラス管内の水銀蒸気中のアーク放電により発生する光放射を利用した光源である。高圧水銀灯と低圧水銀灯に分れ、通常水銀灯と呼ぶときは前者を指す。医療用で用いる場合は太陽灯とも呼ぶ。 高圧水銀灯については、発光管の素材に石英ガラスが用いられることが多いため石英灯 (quartz lamp) 、石英水銀灯 (mercury quartz lamp) などと呼ばれることもある。

見る アルゴンと水銀灯

水蒸気

水蒸気(すいじょうき、スチームともいう)は、水が気化した蒸気。空気中の水蒸気量、特に飽和水蒸気量に対する水蒸気量の割合のことを湿度という。

見る アルゴンと水蒸気

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも言う。

見る アルゴンと気体

気体定数

気体定数(きたいていすう、)は、理想気体の状態方程式における定数として導入される物理定数であるアトキンス『物理化学』 p. 20。理想気体だけでなく、実在気体や液体における量を表すときにも用いられる。 理想気体の多寡を物質量で表す場合は、気体定数は気体の種類に依らない普遍定数であり、特に普遍気体定数()やモル気体定数()と呼び分けられる。理学系、特に物理学において気体定数と呼ぶ場合は、基本的にモル気体定数を指している。これに対して、理想気体の多寡を質量で表す場合は、比気体定数()と呼ばれる。 気体定数の測定法としては、低圧の領域で状態方程式から計算する方法もあるが、低圧で音速測定を行い、そこから求めるほうが正確に得られる。

見る アルゴンと気体定数

液体窒素

液体窒素(えきたいちっそ、liquid nitrogen)は、冷却された窒素の液体である。液化窒素とも呼ばれ液化空気の分留により工業的に大量に製造される。純粋な窒素が液相状態になったものである(液体の密度は三重点で0.807 g/mL)。

見る アルゴンと液体窒素

液体酸素

液体酸素(えきたいさんそ)とは、液化した酸素のこと。酸素の沸点は−183℃、凝固点は−219℃である。製鉄や医療現場の酸素源やロケットの酸化剤として利用され、LOX (Liquid OXygen)、LO2のように略称される。有機化合物に触れると爆発的に反応することがある。

見る アルゴンと液体酸素

温度

とは、温冷の度合いを表す指標である。

見る アルゴンと温度

溶接

溶接(ようせつ、鎔接、英語:welding)とは、2個以上の部材の接合部に熱または圧力もしくはその両者を加え、必要があれば適当な溶加材を加えて、接合部が連続性を持つ一体化された1つの部材とする接合方法。さらに細かく分類すると、融接、圧接、ろう付けに分けられる。現在に至るまで一般的な溶接という表記のほかにかつては鎔接や、その異体字の熔接の文字も並んで利用されていたが、「鎔」「熔」ともに当用漢字に入らず、今日では主に「溶」の文字が用いられている。 溶接は青銅器時代(ろう付、メソポタミアのレリーフ)からも見出され、日本では弥生時代の銅鐸にも溶接の跡が発見されている。現代では、建設業、自動車産業、宇宙工学(航空宇宙産業)、造船などの先端技術だけでなく生活をささえる基本的な古くて新しい技術である。

見る アルゴンと溶接

濃度

は、従来、「溶液中の溶質の割合を濃度という、いろいろな表し方がある。質量パーセント濃度、モル濃度等」(日本化学会編 第2版標準化学用語辞典)と定義されている。しかし、濃度をより狭く「特に混合物中の物質を対象に、量を全体積で除した商を示すための量の名称に追加する用語」(日本産業規格(JIS)) と定義している場合がある。 後者に従えば「質量モル濃度」と訳されているMolarityは「濃度」ではない。しかし、MolarityやMolalityにそれぞれ「質量モル濃度」等「~濃度」以外の訳語は見られない。

見る アルゴンと濃度

日本産業規格

鉱工業品用) 鉱工業品用) は、産業標準化法に基づき、認定標準作成機関の申し出又は日本産業標準調査会(JISC)の答申を受けて、主務大臣が制定する規格であり、日本の国家標準の一つである。またはJISのSは英語 Standards の頭文字であって規格を意味するので、「JIS規格」という表現は冗長であり、これを誤りとする人もある(RAS症候群)。ただしこの表現は、JISC、JSAおよびNHKのサイトでも一部用いられている。と通称されている。 1949年以来、長らくと呼ばれてきたが、法改正に伴い2019年7月1日より改称された(後述)。

見る アルゴンと日本産業規格

放射性同位体

放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素が持つ同位体のうち、原子核が不安定であるために原子核が崩壊して何らかの放射線を放出する同位体のことを言う。したがって、全ての放射性同位体は放射能を持っている。ラジオアイソトープ(radioisotope、またはradioactive isotope)や放射性核種(ほうしゃせいかくしゅ、radionuclide)、放射性同位元素とも呼ばれる。

見る アルゴンと放射性同位体

1 E9 s

109 - 1010 s(32 年 - 320 年)の時間のリスト。

見る アルゴンと1 E9 s

1990年

この項目では、国際的な視点に基づいた1990年について記載する。

見る アルゴンと1990年

2000年

400年ぶりの世紀末閏年(20世紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。西暦2000年代最初の年でもありミレニアムとも呼ばれ、Y2Kと表記されることもある。 この項目では、国際的な視点に基づいた2000年について記載する。

見る アルゴンと2000年

参考情報

貴ガス

Argon 別名。

第18族元素第3周期元素紫外線真空管面心立方格子構造誘導結合プラズマ講談社質量数超新星蒸留自然長さの比較酸素蛍光灯電子捕獲電球SHOW BY ROCK!!東京大学出版会水銀灯水蒸気気体気体定数液体窒素液体酸素温度溶接濃度日本産業規格放射性同位体1 E9 s1990年2000年