ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

アラン・ロイド・ホジキンとエルヴィン・ネーアー

ショートカット: 違い類似点ジャカード類似性係数参考文献

アラン・ロイド・ホジキンとエルヴィン・ネーアーの違い

アラン・ロイド・ホジキン vs. エルヴィン・ネーアー

ー・アラン・ロイド・ホジキン(Sir Alan Lloyd Hodgkin、1914年2月5日 - 1998年12月20日)は、イギリスの生理学者で生物物理学者。中枢神経系の調節に応じて各器官が動くために必要な、神経細胞の活動電位の研究により、アンドリュー・フィールディング・ハクスリーとともに1963年度のノーベル生理学・医学賞を受賞した。1963年にはシナプスの研究者のジョン・C・エックルスも同賞を受賞している。ホジキンとハクスリーはイオンチャネル仮説を打ちたてたが、この仮説はわずか10年後に検証された。. ルヴィン・ネーアー(Erwin Neher、1944年3月20日 - )はドイツの生物学者。ゲッティンゲン大学名誉教授。バイエルン州ランツベルク・アム・レヒに生まれる。 ゲッティンゲンにあるマックス・プランク生物物理化学研究所にて、パッチクランプ法を開発した事で、1991年ベルト・ザクマンと共にノーベル生理学・医学賞を受賞する。 1994年、華中理工大学より名誉博士号が授与される。.

アラン・ロイド・ホジキンとエルヴィン・ネーアー間の類似点

アラン・ロイド・ホジキンとエルヴィン・ネーアーは(ユニオンペディアに)共通で4ものを持っています: ノーベル生理学・医学賞パッチクランプ法ベルト・ザクマン生物物理学

ノーベル生理学・医学賞

ノーベル生理学・医学賞(ノーベルせいりがく・いがくしょう、Nobelpriset i fysiologi eller medicin)はノーベル賞6部門のうちの一つ。「生理学および医学の分野で最も重要な発見を行った」人物に与えられる。選考はカロリンスカ研究所のノーベル賞委員会が行う。 ノーベル生理学・医学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には膝の上に本を広げつつ、病気の少女のために岩から流れる水を汲んでいる医者の姿がデザインされている。.

アラン・ロイド・ホジキンとノーベル生理学・医学賞 · エルヴィン・ネーアーとノーベル生理学・医学賞 · 続きを見る »

パッチクランプ法

パッチクランプ法の概略図パッチクランプ法の実際:左方からのパッチ電極が、中央部の神経細胞の細胞体を捉えている。パッチクランプ法 (Patch clamp technique) は、エルヴィン・ネーアーとベルト・ザクマンにより開発された電気生理学的手法の一種。 当初は単一チャネル記録に利用されていたが、近年では全細胞記録(Whole cell記録)による細胞全体の記録に多く利用されている。NeherとSakmannは1991年に同方法を用いた単一チャネル記録による功績に対しノーベル生理学・医学賞を受賞している。 パッチ電極と生体膜の間で、ピペット内外の抵抗が1ギガオーム以上となる極めて強固なシールを達成して、漏洩電流を最小限に抑えることによって可能となる記録方法である。電位固定による電流記録(ボルテージクランプ)、電流固定による電位記録(カレントクランプ)共に可能である。 人工脂質二重膜や生体試料に対し多く適用されているが、近年ではシナプス前終末や樹状突起、軸索といった神経細胞の極微小領域からの直接記録にも応用されている。これまでは培養細胞や組織スライスに対し多く適用されてきたが、近年では低抵抗の電極を用いた個体動物脳や脊髄からの記録も行われるようになってきている。更には個体動物脳において遺伝子改変細胞から選択的に記録することも可能となってきている。このように、パッチクランプ法の原理を応用した多数の方法が編み出されており、いまではパッチクランプ法は電気生理学、神経科学領域において標準的な研究手法となっている 。.

アラン・ロイド・ホジキンとパッチクランプ法 · エルヴィン・ネーアーとパッチクランプ法 · 続きを見る »

ベルト・ザクマン

ベルト・ザクマン(Bert Sakmann, 1942年6月12日 - )は、ドイツの細胞生理学者。細胞上の単一イオンチャネルの機能に関する研究とパッチクランプの発明によって、エルヴィン・ネーアーとともに1991年度のノーベル生理学・医学賞を受賞した。ザクマンは、ゲッティンゲン大学教授であり、ハイデルベルクにあるマックス・プランク医学研究所名誉教授である。.

アラン・ロイド・ホジキンとベルト・ザクマン · エルヴィン・ネーアーとベルト・ザクマン · 続きを見る »

生物物理学

生物物理学(biophysics)は、生命システムを物理学と物理化学を用いて理解しようと試みる学際科学である。生物物理学は、分子スケールから一個体、果ては生態系まで、全階層の生物学的組織を研究対象とする。生化学、ナノテクノロジー、生物工学、農学物理学、システム生物学と密接に関係し、研究領域を共有することが多い。 分子生物物理学は、生化学や生物物理学が扱う生物学の問題に取り組むが、問題解決に対して定量的なアプローチを取ることが常である。一細胞内におけるさまざまなシステム(RNA生合成、RNA生合成、タンパク質生合成など)の間に起こる相互作用の理解、およびこれら相互作用の調節機構の理解に挑戦する。そしてこれらの問題を解くために、多種多様な実験手法が用いられる。 蛍光イメージング、電子顕微鏡法、X線結晶構造解析、核磁気共鳴分光法(NMR)、原子間力顕微鏡法(AFM)を用いて、生物学的に重要な構造体の可視化を行うことが多い。構造体のコンフォメーション変化の計測には、二重偏光干渉測定法(DPI)や円偏向二色性分析法(CD)などの技術を用いることが多い。光学ハサミや原子間力顕微鏡を用いて分子を直接操作する技術も、力や距離がナノスケールで問題となる生命現象をモニターする時に利用される。分子生物物理学者によく見られる特徴として、複雑な生命現象を数々の相互作用単位から成るシステムとして捉えることが多く、このシステムは統計力学、熱力学、化学反応速度論の立場から理解することが可能であると考えることが多い。多岐にわたる諸分野からの知識や実験手法などを用いることで、個々の分子や複合体間に起こる相互作用、または構造体そのものを直接的に観察、モデル化、操作などを行うことが出来るようになった。 生物物理学は、構造生物学や酵素反応速度論といった分子細胞生物学的なテーマを扱うことが伝統的に多かったが、今日では研究対象となる分野が飛躍的に拡大しつつある。生物物理学では物理学、数学、統計学などから派生したモデルや実験手法を、組織や臓器、生物集団や生態系などさらに大きなシステムに応用することが、近年ではますます多くなっている。.

アラン・ロイド・ホジキンと生物物理学 · エルヴィン・ネーアーと生物物理学 · 続きを見る »

上記のリストは以下の質問に答えます

アラン・ロイド・ホジキンとエルヴィン・ネーアーの間の比較

エルヴィン・ネーアーが23を有しているアラン・ロイド・ホジキンは、42の関係を有しています。 彼らは一般的な4で持っているように、ジャカード指数は6.15%です = 4 / (42 + 23)。

参考文献

この記事では、アラン・ロイド・ホジキンとエルヴィン・ネーアーとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »