ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アミノ酸とケト原性アミノ酸

ショートカット: 違い類似点ジャカード類似性係数参考文献

アミノ酸とケト原性アミノ酸の違い

アミノ酸 vs. ケト原性アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。. 解糖系のピルビン酸はアセチルCoAとなり、アセチルCoAはクエン酸回路でエネルギーを生み出す。 ケト原性アミノ酸(ケトげんせいアミノさん、Ketogenic amino acid)とは、脱アミノ化(アミノ基転移による場合を含む)を受けた後、炭素骨格部分が脂質代謝経路を経由して、脂肪酸やケトン体に転換されうるアミノ酸のことである。主としてアセトアセチルCoAを経てアセチルCoAになる。アセチルCoAはクエン酸回路に取り込まれてエネルギーを生み出す。.

アミノ酸とケト原性アミノ酸間の類似点

アミノ酸とケト原性アミノ酸は(ユニオンペディアに)共通で9ものを持っています: チロシンリシンロイシントリプトファントレオニンフェニルアラニンアミノ酸の代謝分解イソロイシン糖原性アミノ酸

チロシン

チロシン(tyrosine)または、4-ヒドロキシフェニルアラニン (4-hydroxyphenylalanine) は、細胞でのタンパク質生合成に使われる22のアミノ酸のうちの一つ。略号は Tyr または Y。コドンはUACとUAU。極性基を有するが必須アミノ酸ではない。tyrosineはギリシア語でチーズを意味するtyriに由来し、1846年にドイツ人化学者のユストゥス・フォン・リービッヒがチーズのカゼインから発見した。官能基または側鎖のときはチロシル基と呼ばれる。.

アミノ酸とチロシン · ケト原性アミノ酸とチロシン · 続きを見る »

リシン

リシン()はα-アミノ酸のひとつで側鎖に 4-アミノブチル基を持つ。リジンと表記あるいは音読する場合もある。ソディウム。 しかし、分野によってはソディウムを使うように、分野ごとに何が標準的な発音や読みかは異なります。 正しい読みという概念は妄想なのでこの部分をコメントアウトします。 (ただし、リジンはドイツ語読みであるため、現在ではリシンと表記および音読するのが正しい) --> タンパク質構成アミノ酸で、必須アミノ酸である。略号は Lys あるいは K である。側鎖にアミノ基を持つことから、塩基性アミノ酸に分類される。リシンは、クエン酸回路に取り込まれてエネルギーを生み出すケト原性アミノ酸である。.

アミノ酸とリシン · ケト原性アミノ酸とリシン · 続きを見る »

ロイシン

イシン (leucine) は、アミノ酸の1種であり、側鎖に イソブチル基を持つため、疎水性アミノ酸に分類される。また、非極性側鎖アミノ酸で分枝鎖アミノ酸に分類される。略号は Leu あるいは L である。白色結晶となることから、ギリシャ語で『白い』を意味する "leuco" にちなみ命名された。英語式発音を片仮名転記すると「リューシーン」となる。 タンパク質構成アミノ酸で、ヒトはロイシンを合成できないため、ヒトの必須アミノ酸の1つに数えられる。幼児では生長、成人では窒素平衡に必須である。ただし、遺伝子に異常がある場合、メープルシロップ尿症の原因になるアミノ酸の1つでもある。ケト原性を持つ。タンパク質の生成・分解を調整することによって筋肉の維持に関与する。なお、ロイシンは1つキラル中心を持っており天然型のロイシンは、S体のL-ロイシンであり、ヒトはこれを苦く感ずる。対して、天然にはほとんど見られないR体のD-ロイシンは、ヒトには甘く感じられる。.

アミノ酸とロイシン · ケト原性アミノ酸とロイシン · 続きを見る »

トリプトファン

トリプトファン はアミノ酸の一種である。ヒトにおける9つの必須アミノ酸の内の1つ。 系統名 2-アミノ-3-(インドリル)プロピオン酸。略号はTrpまたはW。 側鎖にインドール環を持ち、芳香族アミノ酸に分類される。蛋白質構成アミノ酸である。糖原性・ケト原性の両方を持つ。多くのタンパク質中に見出されるが、含量は低い。ナイアシンの体内活性物質であるNAD(H)をはじめ、セロトニン・メラトニンといったホルモン、キヌレニン等生体色素、また植物において重要な成長ホルモンであるインドール酢酸の前駆体、インドールアルカロイド(トリプタミン類)などの前駆体として重要である。.

アミノ酸とトリプトファン · ケト原性アミノ酸とトリプトファン · 続きを見る »

トレオニン

トレオニン (threonine) はアミノ酸の一種で、側鎖にヒドロキシエチル基を持つ。読みの違いでスレオニンと表記されることも多い。略号は Thr または T。トレオースに構造が似ていることから命名された。 極性無電荷側鎖アミノ酸に分類される。必須アミノ酸の1つ。穀物中のトレオニン含量は比較的高いが、消化吸収が悪い。糖原性を持つ。 遺伝子中ではコドンACU、ACC、ACA、ACGによってコードされている。 光学活性中心を2つ持つため4つの異性体がある。すなわち L-トレオニンには2つのジアステレオマーが存在するが、(2S,3R) 体のみが L-トレオニンと呼ばれる。(2S,3S) 体は天然にはほとんど存在せず、L-アロトレオニン (L-allo-threonine) と呼ばれる。 側鎖のヒドロキシ基にグリコシル化を受け、糖鎖を形成する。トレオニンキナーゼの作用によりリン酸化され、ホスホトレオニンとなる。トレオニンを多く含む食品としてカッテージチーズ、鶏肉、魚、肉、レンズマメが挙げられる。.

アミノ酸とトレオニン · ケト原性アミノ酸とトレオニン · 続きを見る »

フェニルアラニン

フェニルアラニン (phenylalanine) はアミノ酸の一種で、側鎖にベンジル基を持つ。略号は Phe または F。アラニンの側鎖の水素原子が1つフェニル基で置き換えられた構造を持つことが名称の由来である。室温では白色の粉末性固体である。.

アミノ酸とフェニルアラニン · ケト原性アミノ酸とフェニルアラニン · 続きを見る »

アミノ酸の代謝分解

'''クエン酸回路'''(TCA回路)。アミノ酸は分解されるとクエン酸回路上の各物質またはその前駆体になる。 アミノ酸の代謝分解(アミノさんのたいしゃぶんかい)とは、タンパク質を構成する個々のアミノ酸が分解され、クエン酸回路のおのおのの物質に転換されるまでの代謝経路である。 アミノ酸は最終的に二酸化炭素と水に分解されるか、糖新生に使用される。動物の代謝では、アミノ酸からのエネルギー供給は全体の10~15%である。.

アミノ酸とアミノ酸の代謝分解 · アミノ酸の代謝分解とケト原性アミノ酸 · 続きを見る »

イソロイシン

イソロイシン (isoleucine) はアミノ酸の一種で2-アミノ-3-メチルペンタン酸(2-アミノ-3-メチル吉草酸)のこと。側鎖に ''sec''-ブチル基を持つ。略号は Ile または I。ロイシンの構造異性体である。「アイソリューシン」と英語読みで音訳される。 疎水性アミノ酸に分類される。蛋白質構成アミノ酸の1つで、必須アミノ酸である。糖原性・ケト原性を持つ。.

アミノ酸とイソロイシン · イソロイシンとケト原性アミノ酸 · 続きを見る »

糖原性アミノ酸

解糖系とクエン酸回路。 糖原性アミノ酸(とうげんせいアミノさん、Glucogenic amino acid)とは、脱アミノ化(アミノ基転移による場合を含む)を受けた後、炭素骨格が糖新生に用いられるアミノ酸のことである。クエン酸回路の中間体であるオキサロ酢酸から解糖系(糖新生系)を経由して、グルコースに転換されうるアミノ酸のことである。オキサロ酢酸は、ホスホエノールピルビン酸を経由して糖新生に利用される。 ホスホエノールピルビン酸は、オキサロ酢酸の脱炭酸によって生じ、1分子のGTPを加水分解する。この反応はホスホエノールピルビン酸カルボキシキナーゼによって触媒され、糖新生の律速段階となる。 なお、ホスホエノールピルビン酸からピルビン酸に変化する反応は不可逆反応である。このため、ピルビン酸から解糖系の逆反応で直接糖新生を行うことはできない。.

アミノ酸と糖原性アミノ酸 · ケト原性アミノ酸と糖原性アミノ酸 · 続きを見る »

上記のリストは以下の質問に答えます

アミノ酸とケト原性アミノ酸の間の比較

ケト原性アミノ酸が15を有しているアミノ酸は、114の関係を有しています。 彼らは一般的な9で持っているように、ジャカード指数は6.98%です = 9 / (114 + 15)。

参考文献

この記事では、アミノ酸とケト原性アミノ酸との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »