ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子論

ショートカット: 違い類似点ジャカード類似性係数参考文献

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子論の違い

アインシュタイン=ポドルスキー=ローゼンのパラドックス vs. 量子論

アインシュタイン=ポドルスキー=ローゼンのパラドックス(頭文字をとってEPRパラドックスとも呼ばれる)は、量子力学の量子もつれ状態が局所性を(ある意味で)破るので、相対性理論と両立しないのではないかというパラドックスである。アルベルト・アインシュタイン、ボリス・ポドルスキー、ネイサン・ローゼンらの思考実験にちなむ。 EPRパラドックスが発表された当時は、アインシュタインらは局所実在論の立場を取っていたため、量子論が実在論的に完全でない結果を与えることを「パラドックス」であるとした。しかし、ベルの不等式の検証(1982年)などにより、量子論では局所実在論が破綻することが明らかになっており、非局所的な量子もつれ状態はEPR相関と呼ばれている。. 量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子論間の類似点

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子論は(ユニオンペディアに)共通で14ものを持っています: 二重スリット実験ネイサン・ローゼンボリス・ポドリスキーニールス・ボーアベルの不等式アルベルト・アインシュタインコペンハーゲン解釈ジョン・スチュワート・ベル光子相対性理論量子力学量子テレポーテーション量子もつれ量子暗号

二重スリット実験

二重スリット実験(にじゅうスリットじっけん)は、粒子と波動の二重性を典型的に示す実験。リチャード・P・ファインマンはこれを「量子力学の精髄」と呼んだ。ヤングの実験で使われた光の代わりに1個の電子を使ったものである。 この実験は古典的な思考実験であった。実際の実験は1961年にテュービンゲン大学のクラウス・イェンソンが複数の電子で行ったのが最初であり、1回に1個の電子を用いての実験は1974年になってピエール・ジョルジョ・メルリらがミラノ大学で行った。1989年に技術の進歩を反映した追試を外村彰らが行なっている。 1982年、光子1個分以下にまで弱めたレーザー光による同様の実験が浜松ホトニクス株式会社中央研究所によって行われた 。 2002年に、この実験はの読者による投票で「最も美しい実験」に選ばれた。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと二重スリット実験 · 二重スリット実験と量子論 · 続きを見る »

ネイサン・ローゼン

ネイサン・ローゼン(Nathan Rosen, 1909年3月22日 - 1995年12月18日)は、アメリカ・ニューヨーク市出身のイスラエルの物理学者である。 1935年にフィジカルレビューに掲載されたEPRパラドックスに関する論文の共著者として知られるほか、一般相対性理論におけるアインシュタイン-ローゼンブリッジ(ワームホール)の共同発見者でもある。 1941年からノースカロライナ大学の教授を務め、1953年からイスラエルのハイファにあるテクニオン工科大学教授として創設にたずさわり、テクニオン工科大学ではローゼンの名前を冠した連続講義が行われている。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとネイサン・ローゼン · ネイサン・ローゼンと量子論 · 続きを見る »

ボリス・ポドリスキー

ボリス・ポドリスキー(Борис Подольский, Boris Podolsky, 1896年6月29日 - 1966年11月28日)は、ロシア出身のアメリカの物理学者。 ポドルスキーは、ロシア帝国・タガンログのユダヤ人家庭に生まれた。1913年に米国に移住して、南カリフォルニア大学で電気工学を学び、卒業後は米国陸軍に入隊した。除隊後、南カリフォルニア大学で数学の修士号を取得した。1928年にカリフォルニア工科大学で理論物理学の博士号を取得した。 ポドルスキーは、国家研究評議会フェローシップの下で、ドイツのライプツィヒ大学を経て、1930年にカリフォルニア工科大学の教職に戻り、プリンストン高等研究所で研究した。1935年にシンシナティ大学の理論物理学の教授に就任した。 ポドルスキーは、1935年にアルベルト・アインシュタイン、ネイサン・ローゼンとの共著で "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" と題する論文を発表し、その中でアインシュタイン=ポドルスキー=ローゼンのパラドックスを見出した。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとボリス・ポドリスキー · ボリス・ポドリスキーと量子論 · 続きを見る »

ニールス・ボーア

ニールス・ヘンリク・ダヴィド・ボーア(Niels Henrik David Bohr、1885年10月7日 - 1962年11月18日)は、デンマークの理論物理学者。量子論の育ての親として、前期量子論の展開を指導、量子力学の確立に大いに貢献した。王立協会外国人会員。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとニールス・ボーア · ニールス・ボーアと量子論 · 続きを見る »

ベルの不等式

ベルの不等式(—ふとうしき)とは、隠れた変数理論などの局所実在論が満たすべき相関の上限を与える式である。量子力学ではこの上限を破ることができ、実験的に、量子論と局所的な隠れた変数理論を区別することができる。同様の不等式はいくつか存在し、1982年にアラン・アスペによっての破れが報告された。 局所的隠れた変数理論は実験的に否定されたが、非局所隠れた変数理論はいまだに生きており、の確率過程量子化をそのように解釈することができる。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとベルの不等式 · ベルの不等式と量子論 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとアルベルト・アインシュタイン · アルベルト・アインシュタインと量子論 · 続きを見る »

コペンハーゲン解釈

ペンハーゲン解釈(コペンハーゲンかいしゃく)は、量子力学の解釈の一つである。 量子力学の状態は、いくつかの異なる状態の重ね合わせで表現される。このことを、どちらの状態であるとも言及できないと解釈し、観測すると観測値に対応する状態に変化する(波束の収縮が起こる)と解釈する。 「コペンハーゲン解釈」という名称は、デンマークの首都コペンハーゲンにあるボーア研究所から発信されたことに由来する。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとコペンハーゲン解釈 · コペンハーゲン解釈と量子論 · 続きを見る »

ジョン・スチュワート・ベル

ョン・スチュアート・ベル(John Stewart Bell, 1928年6月28日 - 1990年10月1日)は物理学者で、量子物理学の最も重要な定理のひとつであるベルの定理の提唱者である。 彼は北アイルランドのベルファストに生まれ、1948年にクイーンズ大学を実験物理学で卒業した。その後、バーミンガム大学で原子核物理と場の量子論を専門として博士号を取得した。 1960年にCERNの研究者となり、以後亡くなるまでそこに勤めた。 1964年、"On the Einstein-Podolsky-Rosen Paradox(EPRパラドックスについて)"という題の論文を書いた。彼のその論文で、現在ではベルの不等式と呼ばれている結果を導いた。ベルの不等式は局所性と実在性と呼ばれる二つの仮定を認めた任意の理論に対して成り立つ不等式だが、同論文において量子力学では不等式が成り立たないことも示されており、局所実在性と量子力学が本質的に相容れないものであることを意味するこの結果は物理のみならず哲学の世界にも大きな衝撃を与えた。 その後、フランスの物理学者アラン・アスペはベルの不等式が成り立たないことを実験的に証明し、自然界において局所実在性が成り立たないことが示された。 ベルは1990年に脳内出血によりベルファストで亡くなった。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスとジョン・スチュワート・ベル · ジョン・スチュワート・ベルと量子論 · 続きを見る »

光子

|mean_lifetime.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと光子 · 光子と量子論 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと相対性理論 · 相対性理論と量子論 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子力学 · 量子力学と量子論 · 続きを見る »

量子テレポーテーション

量子テレポーテーション(りょうしテレポーテーション、英:Quantum teleportation)とは、古典的な情報伝達手段と量子もつれ (Quantum entanglement) の効果を利用して離れた場所に量子状態を転送することである。 テレポーテーションという名前であるものの、粒子が空間の別の場所に瞬間移動するわけではない。量子もつれの関係にある2つの粒子のうち一方の状態を観測すると瞬時にもう一方の状態が確定的に判明することからこのような名前がついた。また、この際に粒子間で情報の伝達や物理的作用は起こっていない。これは、観測により任意の量子状態を実現することは不可能であることからもわかる。したがって、量子テレポーテーションを用いれば超光速通信が実現できるなどということはない。 古典的な情報転送の経路を俗に古典チャンネルなどと言うことに対し、量子もつれによる転送をアインシュタイン=ポドルスキー=ローゼン (Einstein-Podolsky-Rosen; EPR) チャンネルと呼ぶ。EPR相関から来ている。古典チャンネルでは任意の量子状態を送ることはできず、量子状態を送るには系自体を送信するか、量子テレポーテーションを用いる必要がある。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子テレポーテーション · 量子テレポーテーションと量子論 · 続きを見る »

量子もつれ

量子もつれ(りょうしもつれ、quantum entanglement)とは、一般的に を漠然と指す用語として用いられる。しかし、量子情報理論においてはより限定的に、 を表す用語として用いられる。 (2)は(1)のある側面を緻密化したものであるが、捨象された部分も少なくない。例えば典型的な非局所効果であるベルの不等式の破れなどは(2)の枠組みにはなじまない。 どちらの意味においても、 複合系の状態がそれを構成する個々の部分系の量子状態の積として表せないときにのみ、量子もつれは存在する(逆は必ずしも真ではない)。このときの複合系の状態をエンタングル状態という。量子もつれは、量子絡み合い(りょうしからみあい)、量子エンタングルメントまたは単にエンタングルメントともよばれる。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子もつれ · 量子もつれと量子論 · 続きを見る »

量子暗号

量子暗号(りょうしあんごう、Quantum cryptography)とは、通常は量子鍵配送のことを指す。完全な秘密通信は、伝送する情報の量と同じ長さの秘密鍵を送信者と受信者が共有することで初めて可能になる(ワンタイムパッドと呼ばれる方式を用いる)。この秘密鍵の共有を量子状態の特性によって実現し、通信路上の盗聴が検出できる。計算量的安全性でなく情報理論的安全性であることと、その実装の基礎が量子力学という物理学の基本法則に基づいていることが特徴である。なお、商用に広く用いられる公開鍵暗号は解読に計算時間が膨大にかかるだけ(計算量的安全性)であり、情報理論的に安全な秘密通信ではない。量子暗号は量子情報理論の、現在のところほぼ唯一の現実的な応用である。 別の概念として、量子コンピュータを用いた公開鍵暗号方式を「量子公開鍵暗号」ということがある。例えば、OTU暗号 (岡本・田中・内山暗号) はナップサック問題といわれるNP完全問題に基づいており、鍵の生成時に離散対数問題を解くために量子コンピュータを用いる。.

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子暗号 · 量子暗号と量子論 · 続きを見る »

上記のリストは以下の質問に答えます

アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子論の間の比較

量子論が194を有しているアインシュタイン=ポドルスキー=ローゼンのパラドックスは、27の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は6.33%です = 14 / (27 + 194)。

参考文献

この記事では、アインシュタイン=ポドルスキー=ローゼンのパラドックスと量子論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »