ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

−1と因数分解

ショートカット: 違い類似点ジャカード類似性係数参考文献

−1と因数分解の違い

−1 vs. 因数分解

−1(マイナスいち)は、最大の負の整数であり、整数を小さい順に並べたとき、−2 の次で 0 の前である(0 からマイナス無限大へ数えれば、最初の負の数で、0 の次で −2 の前である)。. 数学における因数分解(いんすうぶんかい、factorization)は(数、多項式、行列といったような、積の定義される)代数的対象を、(それらを掛け合わせると元に戻る)別の対象、つまり因数 (factor) の積に分解することである。たとえば、15 という数は 3 × 5 という因数の積に分解され、多項式 x2 − 4 は (x − 2)(x + 2) という因数の積に分解される。このようにより単純な対象の積になっている。 因数分解の反対は、因数を掛け合わせてもとの展開された対象を得る過程であるところの、展開である。 因数分解の目的はふつう、何らかのものを(自然数ならば素数、多項式ならば既約多項式といったような)「基本的な構成要素」に帰着させることである。1でない自然数が素数の積で表せることは算術の基本定理で、定数でない一変数複素係数多項式が一次式の積で表せることは代数学の基本定理で保障されている。ヴィエタの公式は多項式の根と係数の関係を記述するものである。 巨大整数の素因数分解は困難な問題で、これを一般に短時間に行う方法は知られていない。この複雑性はRSA暗号のような公開鍵暗号によるセキュリティの信頼性の基礎になっている。 行列も(応用に際して利用しやすい)特別な種類の行列の積に分解することができる。よく用いられるのはたとえば、直交行列やユニタリ行列あるいは三角行列などである。ほかに、QR, LQ, QL, RQ, RZ のような分解が知られる。 他の例としては、写像を特定の性質を持つ写像の合成の形に分解することが挙げられる。たとえば、任意の写像は全射と単射の合成と見ることができる。これはによって一般化される。.

−1と因数分解間の類似点

−1と因数分解は(ユニオンペディアに)共通で2ものを持っています: 素数行列

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

−1と素数 · 因数分解と素数 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

−1と行列 · 因数分解と行列 · 続きを見る »

上記のリストは以下の質問に答えます

−1と因数分解の間の比較

因数分解が33を有している−1は、69の関係を有しています。 彼らは一般的な2で持っているように、ジャカード指数は1.96%です = 2 / (69 + 33)。

参考文献

この記事では、−1と因数分解との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »