ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

X線と放射光

ショートカット: 違い類似点ジャカード類似性係数参考文献

X線と放射光の違い

X線 vs. 放射光

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。. 放射光(ほうしゃこう、Synchrotron Radiation)は、シンクロトロン放射による電磁波である。「光」とあるが、実際は、人工のものでは赤外線からX線、天然のものでは電波からγ線の範囲のものがあり、特に可視光に限定して呼ぶことは少ない。また、電磁波が放射される現象は他にも多くあるが、シンクロトロン放射による電磁波に限り放射光と呼ぶ。 シンクロトロン放射は、高エネルギーの電子等の荷電粒子が磁場中でローレンツ力により曲がるとき、電磁波を放射する現象である。「シンクロトロン(同期式円形加速器)」と名が付いているが成因を問わずこう呼ぶ。放射光と呼ぶのは人工のものであることが多い。.

X線と放射光間の類似点

X線と放射光は(ユニオンペディアに)共通で12ものを持っています: 原子レーザー元素結晶構造物性物理学蛍光X線電磁波SPring-8X線X線小角散乱X線回折X線撮影

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

X線と原子 · 原子と放射光 · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

X線とレーザー · レーザーと放射光 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

X線と元素 · 元素と放射光 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

X線と結晶構造 · 放射光と結晶構造 · 続きを見る »

物性物理学

物性物理学(ぶっせいぶつりがく)は、物質のさまざまな巨視的性質を微視的な観点から研究する物理学の分野。量子力学や統計力学を理論的基盤とし、その理論部門を物性論(ぶっせいろん)と呼ぶことも多い。これらは日本の物理学界独特の名称であるが、しばしば凝縮系物理学に比定される。狭義には固体物理学を指し、広義には固体物理学(結晶・アモルファス・合金)およびソフトマター物理学・表面物理学・物理化学、プラズマ・流体力学などの周辺分野を含む。.

X線と物性物理学 · 放射光と物性物理学 · 続きを見る »

蛍光X線

蛍光X線(けいこうXせん、X-ray Fluorescence、XRF)とは、元素に特有の一定以上のエネルギーをもつX線を照射することによって、その物質を構成する原子の内殻の電子が励起されて生じた空孔に、外殻の電子が遷移する際に放出される特性X線のこと。その波長は内殻と外殻のエネルギー差に対応する。.

X線と蛍光X線 · 放射光と蛍光X線 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

X線と電磁波 · 放射光と電磁波 · 続きを見る »

SPring-8

上空より撮影したSPring-8サイト全景SPring-8蓄積リング棟(中央の円環状建物)および SACLA(左上方の直線状建物) SPring-8の蓄積リング棟。内部に円形加速器、各種ビームラインおよび実験設備がある。中央の小山は蓄積リングに囲まれた三原栗山。 SPring-8(スプリングエイト、Super Photon ring-8 GeV)は、兵庫県佐用郡佐用町光都一丁目1番1号、播磨科学公園都市内に位置する大型放射光施設。電子を加速・貯蔵するための加速器群と発生した放射光を利用するための実験施設および各種付属施設から成る。名前の8は電子の最大加速エネルギーである8GeVに因んでつけられた。.

SPring-8とX線 · SPring-8と放射光 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

X線とX線 · X線と放射光 · 続きを見る »

X線小角散乱

X線小角散乱(Xせんしょうかくさんらん、small angle X-ray scattering)とは、X線を物質に照射して散乱するX線のうち、散乱角が小さいものを測定することにより物質の構造情報を得る手法である。略してSAXSということも多い。あるいは、X線の小角度の散乱(小角散乱)の現象のことを指す。 X線の散乱を角度によって分類した場合、小角散乱と広角散乱(回折)とに大別される。どの程度の散乱角度から小角散乱というかは場合によって異なるが、通常は10度以下の場合をいう。広角散乱を利用する分析法(X線回折)が結晶中の原子配列のようなオングストロームオーダーの分析に使用されるのに対し、小角散乱法では微粒子や液晶、合金の内部構造といった数ナノメートルレベルでの規則構造の分析に用いる。 小角散乱法では、入射光に非常に近い位置での測定を行うため、精密な光学系と、場合によっては強力なX線源が必要となる。SPring-8やPF(PFリング)などの放射光を利用することも多い(国内の放射光施設では、KEK/PF、Spring-8、SAGA-LSに測定用ビームラインが設置されている)。.

X線とX線小角散乱 · X線小角散乱と放射光 · 続きを見る »

X線回折

X線回折(エックスせんかいせつ、、XRD)は、X線が結晶格子で回折を示す現象である。 1912年にドイツのマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。 逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法や中性子回折法がある。.

X線とX線回折 · X線回折と放射光 · 続きを見る »

X線撮影

X線撮影(エックスせんさつえい)は、エックス線を目的の物質に照射し、透過したエックス線を写真乾板・写真フィルム・イメージングプレート・フラットパネルディテクターなどの検出器で可視化することで、内部の様子を知る画像検査法の一種である。 医療のほか、空港の手荷物検査などの非破壊検査に利用されている。X線の発見者であるヴィルヘルム・レントゲンに因み、レントゲン撮影または単にレントゲンとも呼ぶ。医療従事者は を略して X-P ともいう。.

X線とX線撮影 · X線撮影と放射光 · 続きを見る »

上記のリストは以下の質問に答えます

X線と放射光の間の比較

放射光が86を有しているX線は、82の関係を有しています。 彼らは一般的な12で持っているように、ジャカード指数は7.14%です = 12 / (82 + 86)。

参考文献

この記事では、X線と放射光との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »