ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

X線とX線回折

ショートカット: 違い類似点ジャカード類似性係数参考文献

X線とX線回折の違い

X線 vs. X線回折

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。. X線回折(エックスせんかいせつ、、XRD)は、X線が結晶格子で回折を示す現象である。 1912年にドイツのマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。 逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法や中性子回折法がある。.

X線とX線回折間の類似点

X線とX線回折は(ユニオンペディアに)共通で16ものを持っています: モリブデンローレンス・ブラッグヴィルヘルム・レントゲンヘンリー・ブラッグブラッグの法則ドイツ回折結晶構造特性X線電子電磁波SPring-8X線波長放射光

モリブデン

モリブデン(molybdenum 、Molybdän )は原子番号42の元素。元素記号は Mo。クロム族元素の1つ。.

X線とモリブデン · X線回折とモリブデン · 続きを見る »

ローレンス・ブラッグ

ウィリアム・ローレンス・ブラッグ(William Lawrence Bragg、1890年3月31日 - 1971年7月1日)は、オーストラリア生まれのイギリスの物理学者。現代結晶学の創始者のひとり。X線回折を用いて物質の構造を研究した。1915年、25歳の時に、父であるヘンリー・ブラッグと共にノーベル物理学賞を受賞。キャヴェンディッシュ研究所所長を務めていた1953年2月、同研究所のジェームズ・ワトソンとフランシス・クリックがDNAの構造を解明した。.

X線とローレンス・ブラッグ · X線回折とローレンス・ブラッグ · 続きを見る »

ヴィルヘルム・レントゲン

ヴィルヘルム・コンラート・レントゲン(、1845年3月27日 – 1923年2月10日)は、ドイツの物理学者。1895年にX線の発見を報告し、この功績により、1901年、第1回ノーベル物理学賞を受賞した。.

X線とヴィルヘルム・レントゲン · X線回折とヴィルヘルム・レントゲン · 続きを見る »

ヘンリー・ブラッグ

ウィリアム・ヘンリー・ブラッグ(William Henry Bragg、1862年7月2日 - 1942年3月12日)は、イギリスの物理学者。1915年に「X線による結晶構造解析に関する研究」により息子のウィリアム・ローレンス・ブラッグと共にノーベル物理学賞を受賞した。.

X線とヘンリー・ブラッグ · X線回折とヘンリー・ブラッグ · 続きを見る »

ブラッグの法則

ブラッグの法則 (Bragg's law) は、X線の回折・反射についての物理法則。ヘンリー・ブラッグとローレンス・ブラッグの父子によって発見された。 結晶のように周期的な構造を持つ物質に対して、ある波長のX線をいろいろな角度から照射すると、ある角度では強いX線の反射が起こるが、別の角度では反射がほとんど起こらないという現象を観測できる。 これは物質を構成する原子により散乱されたX線が、結晶構造の繰り返しによって強めあったり、打ち消しあったりするためである。ブラッグの法則は、X線の波長、結晶面の間隔、および結晶面とX線が成す角度の間の関係を説明する。 ブラッグの法則は結晶構造の解析に用いられている。.

X線とブラッグの法則 · X線回折とブラッグの法則 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

X線とドイツ · X線回折とドイツ · 続きを見る »

回折

平面波がスリットから回折する様子を波面で表わした模式図 回折(かいせつ、英語:diffraction)とは媒質中を伝わる波(または波動)に対し障害物が存在する時、波がその障害物の背後など、つまり一見すると幾何学的には到達できない領域に回り込んで伝わっていく現象のことを言う。1665年にイタリアの数学者・物理学者であったフランチェスコ・マリア・グリマルディにより初めて報告された。障害物に対して波長が大きいほど回折角(障害物の背後に回り込む角度)は大きい。 回折は音波、水の波、電磁波(可視光やX線など)を含むあらゆる波について起こる。単色光を十分に狭いスリットに通しスクリーンに当てると回折によって光のあたる範囲が広がる。また、スリットが複数の場合や単一でも波長より広い場合、干渉によって縞模様ができる。この現象は、量子性が顕著となる粒子のビーム(例:電子線、中性子線など)でも起こる(参照:物質波)。.

X線と回折 · X線回折と回折 · 続きを見る »

結晶構造

結晶構造(けっしょうこうぞう) とは、結晶中の原子の配置構造のことをいう。.

X線と結晶構造 · X線回折と結晶構造 · 続きを見る »

特性X線

ネルギーで内殻電子が励起される(左)と、その緩和過程で準位間に相当するエネルギーを持った特性X線が発生する(右)。 特性X線(とくせいえっくすせん)とは、ある原子の電子軌道や原子核において、高い電子準位から低い電子準位に遷移する過程で放射されるX線である。単一エネルギー、線スペクトルが特徴。 機器分析で使用される単一波長のX線はふつう特性X線を利用しており、発生源となる元素(ターゲット)と電子殻によって表記する。X線光電子分光ではMgKα線 (1253.6eV) やAlKα線 (1486.6eV)、X線回折ではCuKα線 (8.048keV) やMoKα線 (17.5keV) などを用いる。 内殻電子の励起源としてX線を用いたときに発生する特性X線は、蛍光X線(XRF)と呼ばれる。その他にも励起源に電子を用いて元素分析をする電子線マイクロアナライザ(EPMA)や、陽子やイオンを用いて元素分析をする粒子線励起X線分析(PIXE)がある。.

X線と特性X線 · X線回折と特性X線 · 続きを見る »

銅(どう)は原子番号29の元素。元素記号は Cu。 周期表では金、銀と同じく11族に属する遷移金属である。英語でcopper、ラテン語でcuprumと言う。.

X線と銅 · X線回折と銅 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

X線と電子 · X線回折と電子 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

X線と電磁波 · X線回折と電磁波 · 続きを見る »

SPring-8

上空より撮影したSPring-8サイト全景SPring-8蓄積リング棟(中央の円環状建物)および SACLA(左上方の直線状建物) SPring-8の蓄積リング棟。内部に円形加速器、各種ビームラインおよび実験設備がある。中央の小山は蓄積リングに囲まれた三原栗山。 SPring-8(スプリングエイト、Super Photon ring-8 GeV)は、兵庫県佐用郡佐用町光都一丁目1番1号、播磨科学公園都市内に位置する大型放射光施設。電子を加速・貯蔵するための加速器群と発生した放射光を利用するための実験施設および各種付属施設から成る。名前の8は電子の最大加速エネルギーである8GeVに因んでつけられた。.

SPring-8とX線 · SPring-8とX線回折 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

X線とX線 · X線とX線回折 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

X線と波長 · X線回折と波長 · 続きを見る »

放射光

放射光(ほうしゃこう、Synchrotron Radiation)は、シンクロトロン放射による電磁波である。「光」とあるが、実際は、人工のものでは赤外線からX線、天然のものでは電波からγ線の範囲のものがあり、特に可視光に限定して呼ぶことは少ない。また、電磁波が放射される現象は他にも多くあるが、シンクロトロン放射による電磁波に限り放射光と呼ぶ。 シンクロトロン放射は、高エネルギーの電子等の荷電粒子が磁場中でローレンツ力により曲がるとき、電磁波を放射する現象である。「シンクロトロン(同期式円形加速器)」と名が付いているが成因を問わずこう呼ぶ。放射光と呼ぶのは人工のものであることが多い。.

X線と放射光 · X線回折と放射光 · 続きを見る »

上記のリストは以下の質問に答えます

X線とX線回折の間の比較

X線回折が65を有しているX線は、82の関係を有しています。 彼らは一般的な16で持っているように、ジャカード指数は10.88%です = 16 / (82 + 65)。

参考文献

この記事では、X線とX線回折との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »