ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

Tor関手とベッチ数

ショートカット: 違い類似点ジャカード類似性係数参考文献

Tor関手とベッチ数の違い

Tor関手 vs. ベッチ数

ホモロジー代数において、Tor 関手 (Tor functor, torsion functor) はテンソル積の関手の導来関手である。それらは最初一般に代数トポロジーにおいてと普遍係数定理を表現するために定義された。 特に R を環とし、R-Mod で左 R-加群の圏を、Mod-R で右 R-加群の圏を表す。R-Mod の加群 B をひとつ選んで固定する。Mod-R の対象 A に対し、T(A). 代数的位相幾何学において、ベッチ数 (Betti numbers) は、位相空間に対する不変量であり、自然数に値をもつ。 右の図のようなトーラスを考える。このトーラスに切り口が円周になるように切れ込みをいれたとき、その結果二つのピースに分かれない切り方が、穴のまわりにそって一周する方法と、縦に切断する方法の二通りある。このことからトーラスの 1 次ベッチ数は 2 である。直感的な言葉を使うと、ベッチ数は様々な次元の「穴」の数である。例えば、円の 1 次ベッチ数は 1であり、一般的なプレツェル(pretzel)の場合は、1 次ベッチ数は穴の数の 2 倍となる。 ベッチ数は、今日、数学のみならず計算機科学やデジタル画像などの分野でも研究されている。 「ベッチ数」ということばは、エンリコ・ベッチ (Enrico Betti) にちなみ、アンリ・ポアンカレ (Henri Poincaré) により命名された。.

Tor関手とベッチ数間の類似点

Tor関手とベッチ数は(ユニオンペディアに)共通で4ものを持っています: 代数的位相幾何学ホモロジー (数学)捩れ部分群普遍係数定理

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

Tor関手と代数的位相幾何学 · ベッチ数と代数的位相幾何学 · 続きを見る »

ホモロジー (数学)

数学、とくに代数的位相幾何学や抽象代数学において、ホモロジー (homology) (「同一である」ことを意味するギリシャ語のホモス (ὁμός) に由来)は与えられた数学的対象、例えば位相空間や群に、アーベル群や加群の列を対応させる一つの一般的な手続きをいう。より詳しい背景については ホモロジー論 を見られたい。また、ホモロジーの手法の位相空間に対する具体的な適用については特異ホモロジーを、群についてのそれは群コホモロジーを、それぞれ参照されたい。 位相空間に対しては、ホモロジー群は一般にホモトピー群よりもずっと計算しやすく、したがって、空間を分類する道具としてはより手軽に扱えるものといえるだろう。.

Tor関手とホモロジー (数学) · ベッチ数とホモロジー (数学) · 続きを見る »

捩れ部分群

アーベル群の理論において、アーベル群 A の捩れ部分群(ねじれぶぶんぐん、torsion subgroup) AT は A の部分群であって有限の位数をもつすべての元からなるものである。アーベル群 A が捩れ (torsion) 群(あるいは'''周期的''' (periodic) 群であるとは、A のすべての元の位数が有限であることで、torsion-free であるとは、単位元を除く A のすべての元の位数が無限であることである。 AT が加法で閉じていることの証明は加法の可換性によっている(例の節を見よ)。 A がアーベル群であれば、捩れ部分群 T は A の fully characteristic subgroup であり、剰余群 A/T は torsion-free である。すべての群をその捩れ部分群に送りすべての準同型をその捩れ部分群への制限に送る、アーベル群の圏から捩れ群の圏への共変関手が存在する。すべての群をその捩れ部分群による商に送りすべての準同型をその明らかな誘導写像(well-defined であることは容易に確かめられる)に送る、アーベル群の圏から torsion-free な群の圏への共変関手も存在する。 A が有限生成アーベル群であれば、その捩れ部分群 T と torsion-free な部分群の直和として書くことができる(しかしこれはすべての非有限生成アーベル群に対して正しくない)。A の捩れ部分群 S と torsion-free な部分群の直和としての任意の分解において、S は T と等しくなければならない(しかし torsion-free 部分群は一意的には定まらない)。これは有限生成アーベル群の分類において重要なステップである。.

Tor関手と捩れ部分群 · ベッチ数と捩れ部分群 · 続きを見る »

普遍係数定理

代数トポロジーにおいて、普遍係数定理(ふへんけいすうていり、universal coefficient theorems)はホモロジー論とコホモロジー論の間の関係を確立する。例えば、位相空間 の整係数ホモロジー論と、任意のアーベル群 に係数をもつホモロジーは以下のように関連する。整係数ホモロジー群 は群 を完全に決定する。ここで はあるいはより一般の特異ホモロジー論でもよい: 結果自体は自由アーベル群のチェイン複体についてのホモロジー代数の純粋な成果である。結果の形は、Tor関手を使うという代償を払って、他の係数 を使うことができる形である。 例えば を に取って係数が modulo 2 であるようにすることは一般的である。これはホモロジーに 2-捩れがないことによって straightforward になる。極めて一般的に、結果は のベッチ数 と体 に係数をもつベッチ数 の間に成り立つ関係を示す。これらは異なるかもしれないが、 の標数がホモロジーに -捩れがある素数 であるときのみである。.

Tor関手と普遍係数定理 · ベッチ数と普遍係数定理 · 続きを見る »

上記のリストは以下の質問に答えます

Tor関手とベッチ数の間の比較

ベッチ数が33を有しているTor関手は、25の関係を有しています。 彼らは一般的な4で持っているように、ジャカード指数は6.90%です = 4 / (25 + 33)。

参考文献

この記事では、Tor関手とベッチ数との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »