ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

Pn接合と太陽電池

ショートカット: 違い類似点ジャカード類似性係数参考文献

Pn接合と太陽電池の違い

Pn接合 vs. 太陽電池

pn接合(ぴーえぬせつごう、pn junction)とは、半導体中でp型の領域とn型の領域が接している部分を言う。整流性、エレクトロルミネセンス、光起電力効果などの現象を示すほか、接合部には電子や正孔の不足する空乏層が発生する。これらの性質がダイオードやトランジスタを始めとする各種の半導体素子で様々な形で応用されている。またショットキー接合の示す整流性も、pn接合と原理的に良く似る。. 単結晶シリコン型太陽電池 太陽電池(たいようでんち、Solar cell)は、光起電力効果を利用し、光エネルギーを電力に変換する電力機器である。光電池(こうでんち、ひかりでんち)とも呼ばれる。一般的な一次電池や二次電池のように電力を蓄える蓄電池ではなく、光起電力効果によって光を即時に電力に変換して出力する発電機である。タイプとしては、シリコン太陽電池の他、様々な化合物半導体などを素材にしたものが実用化されている。色素増感型(有機太陽電池)と呼ばれる太陽電池も研究されている。 太陽電池(セル)を複数枚直並列接続して必要な電圧と電流を得られるようにしたパネル状の製品単体は、ソーラーパネルまたはソーラーモジュールと呼ばれる。モジュールをさらに複数直並列接続して必要となる電力が得られるように設置したものは、ソーラーアレイと呼ばれる。.

Pn接合と太陽電池間の類似点

Pn接合と太陽電池は(ユニオンペディアに)共通で15ものを持っています: 半導体バンドギャップボルツマン定数フォトダイオードダイオードケイ素光子光起電力効果発光ダイオード電子電子ボルト電圧電荷担体電気素量温度

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

Pn接合と半導体 · 半導体と太陽電池 · 続きを見る »

バンドギャップ

バンドギャップ(Band gap、禁止帯、禁制帯)とは、広義の意味は、結晶のバンド構造において電子が存在できない領域全般を指す。 ただし半導体、絶縁体の分野においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギー準位(およびそのエネルギーの差)を指す。 E-k空間上において電子はこの状態を取ることができない。バンドギャップの存在に起因する半導体の物性は半導体素子において積極的に利用されている。 半導体のバンド構造の模式図。Eは電子の持つエネルギー、kは波数。Egが'''バンドギャップ'''。半導体(や絶縁体)では「絶対零度で電子が入っている一番上のエネルギーバンド」が電子で満たされており(価電子帯)、その上に禁制帯を隔てて空帯がある(伝導帯)。 金属、および半導体・絶縁体のバンド構造の簡単な模式図(k空間無視) バンドギャップを表現する図は、E-k空間においてバンドギャップ周辺だけに着目した図、さらにk空間を無視してエネルギー準位だけを表現した図も良く用いられる。.

Pn接合とバンドギャップ · バンドギャップと太陽電池 · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

Pn接合とボルツマン定数 · ボルツマン定数と太陽電池 · 続きを見る »

フォトダイオード

フォトダイオード フォトダイオード フォトダイオード(Photodiode)は、光検出器として働く半導体のダイオードである。フォトダイオードにはデバイスの検出部に光を取り込むための窓や光ファイバーの接続部が存在している。真空紫外線やX線検出用のフォトダイオードは検出窓が存在しないものもある。 フォトトランジスタは、基本的にはバイポーラトランジスタで、バイポーラトランジスタのベース・コレクターのpn接合に光が到達するようなケースに封入している。フォトトランジスタはフォトダイオードの様に動作するが、光に対してはより高感度である。これは、光子によりベースコレクター間の接合に電子が生成され、それがベースに注入されるからで、この電流がトランジスター動作で増幅される。しかし、フォトトランジスタはフォトダイオードより応答時間が遅い。 ほとんどのフォトダイオードは右の写真の様な形状をしており、発光ダイオードと形状が似ている。2端子(もしくはワイヤー)がそこより出ている。端子の長さの短い方がカソードで、長い方がアノードである。下に回路図が示してあり、電流はアノードからカソードの方向に矢印の向きに流れる。.

Pn接合とフォトダイオード · フォトダイオードと太陽電池 · 続きを見る »

ダイオード

図1:ダイオードの拡大図正方形を形成しているのが半導体の結晶を示す 図2:様々な半導体ダイオード。下部:ブリッジダイオード 図3:真空管ダイオードの構造 図4 ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。今日では単にダイオードと言えば、通常、半導体ダイオードを指す。 1919年、イギリスの物理学者 William Henry Eccles がギリシア語の di.

Pn接合とダイオード · ダイオードと太陽電池 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

Pn接合とケイ素 · ケイ素と太陽電池 · 続きを見る »

光子

|mean_lifetime.

Pn接合と光子 · 光子と太陽電池 · 続きを見る »

光起電力効果

光起電力効果(ひかりきでんりょくこうか、Photovoltaic effect)は、物質に光を照射することで起電力が発生する現象である。光電効果の一種にも分類される。.

Pn接合と光起電力効果 · 光起電力効果と太陽電池 · 続きを見る »

発光ダイオード

光ダイオード(はっこうダイオード、light emitting diode: LED)はダイオードの一種で、順方向に電圧を加えた際に発光する半導体素子である。 1962年、ニック・ホロニアックにより発明された。発明当時は赤色のみだった。1972年にによって黄緑色LEDが発明された。1990年代初め、赤崎勇、天野浩、中村修二らによって、窒化ガリウムによる青色LEDの半導体が発明された。 発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(OLEDs、有機EL)も分類上、LEDに含まれる。.

Pn接合と発光ダイオード · 太陽電池と発光ダイオード · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

Pn接合と電子 · 太陽電池と電子 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

Pn接合と電子ボルト · 太陽電池と電子ボルト · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

Pn接合と電圧 · 太陽電池と電圧 · 続きを見る »

電荷担体

電荷担体または電荷キャリア(charge carrier)とは、物理学において電荷を運ぶ自由な粒子を指し、特に電気伝導体における電流を担う粒子を指す。例えば、電子やイオンがある。 金属では、伝導電子が電荷担体となる。各原子の外側の1個または2個の価電子は金属の結晶構造の中を自由に移動できる。この自由電子の雲をフェルミ気体という。 塩水のような電解液では、陽イオンと陰イオンが電荷担体となる。同様にイオン性固体が融解した液体においても、陽イオンと陰イオンが電荷担体となる(例えば、ホール・エルー法を参照)。 電弧のようなプラズマでは、電子とイオン化した気体の陽イオン、さらには電極が蒸発した素材などが電荷担体となる。電極の気化は真空でも起きるが、電弧は真空中では存在しえない。その場合は気化した電極が低圧の気体となって電弧を生じるための電荷担体となっている。 真空管などの真空中では、自由電子が電荷担体となる。 半導体では、伝導電子と正孔(ホール)が電荷担体となる。正孔とは価電子帯の空席になっている部分を粒子のように移動するものと捉えた見方であり、正の電荷を担う。N型半導体では伝導電子、P型半導体では正孔が電荷担体(多数キャリア)となる。pn接合にみられる空乏層には電荷担体はほとんどない。.

Pn接合と電荷担体 · 太陽電池と電荷担体 · 続きを見る »

電気素量

電気素量 (でんきそりょう、elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 で表される。 原子核物理学や化学では粒子の電荷を表すために用いられる。現在ではクォークの発見により、素電荷の1/3を単位とする粒子も存在するが、クォークの閉じ込めにより単独で取り出すことはできず、素電荷が電気量の最小単位である。 素粒子物理学では、電磁相互作用のゲージ結合定数であり、相互作用の大きさを表す指標である。 SIにおける電気素量の値は である2014年CODATA推奨値。SIとは異なる構成のガウス単位系(単位: esu)での値は であるParticle Data Group。.

Pn接合と電気素量 · 太陽電池と電気素量 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

Pn接合と温度 · 太陽電池と温度 · 続きを見る »

上記のリストは以下の質問に答えます

Pn接合と太陽電池の間の比較

太陽電池が141を有しているPn接合は、42の関係を有しています。 彼らは一般的な15で持っているように、ジャカード指数は8.20%です = 15 / (42 + 141)。

参考文献

この記事では、Pn接合と太陽電池との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »