ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

POWER7とマルチコア

ショートカット: 違い類似点ジャカード類似性係数参考文献

POWER7とマルチコアの違い

POWER7 vs. マルチコア

POWER7(パワーセブン)は、IBMが2010年2月に発表したPower Architectureベースの64ビットマイクロプロセッサである。2012年10月に強化版のPOWER7+(パワーセブンプラス)が発表された。前身はPOWER6、後継はPOWER8。. マルチコア (Multiple core, Multi-core) は、1つのプロセッサ・パッケージ内に複数のプロセッサ・コアを搭載する技術であり、マルチプロセッシングの一形態である。 外見的には1つのプロセッサでありながら論理的には複数のプロセッサとして認識されるため、同じコア数のマルチプロセッサと比較して実装面積としては省スペースであり、プロセッサコア間の通信を高速化することも可能である。主に並列処理を行わせる環境下では、プロセッサ・チップ全体での処理能力を上げ性能向上を果たすために行われる。このプロセッサ・パッケージ内のプロセッサ・コアが2つであればデュアルコア (Dual-core)、4つであればクアッドコア (Quad-core)、6つであればヘキサコア (Hexa-core)、8つは伝統的にインテルではオクタルコア (Octal-core) 、AMDではオクタコア (Octa-core)と呼ばれるほか、オクトコア (Octo-core) とも呼ばれる。さらに高性能な専用プロセッサの中には十個以上ものコアを持つものがあり、メニーコア (Many-core) と呼ばれる。 なお、従来の1つのコアを持つプロセッサはマルチコアに対してシングルコア (Single-core) とも呼ばれる。 レベル1キャッシュが2つあり、レベル2キャッシュは2つのコアと共有される。.

POWER7とマルチコア間の類似点

POWER7とマルチコアは(ユニオンペディアに)共通で13ものを持っています: 同時マルチスレッディング並列計算トランジスタアウト・オブ・オーダー実行オペレーティングシステムキャッシュメモリスーパーコンピュータIBMOpteronPower ArchitecturePOWER62006年2010年

同時マルチスレッディング

同時マルチスレッディング(どうじマルチスレッディング、Simultaneous Multithreading、SMT)とは、単一CPUにより複数の実行スレッドを同時に実行するプロセッサの機能。.

POWER7と同時マルチスレッディング · マルチコアと同時マルチスレッディング · 続きを見る »

並列計算

並列計算(へいれつけいさん、parallel computing)は、コンピュータにおいて複数のプロセッサで1つのタスクを動作させること。並列コンピューティングや並列処理とも呼ばれる。問題を解く過程はより小さなタスクに分割できることが多い、という事実を利用して処理効率の向上を図る手法である。また、このために設計されたコンピュータを並列コンピュータという。ディープ・ブルーなどが有名。 関連する概念に並行計算(へいこうけいさん)があるが、並行計算は一つのタスクの計算を並列化することにとどまらず、複数の相互作用しうるタスクをスレッドなどをもちいて複数の計算資源にスケジューリングするといった、より汎用性の高い処理をさす。 特に、並列計算専用に設計されたコンピュータを用いずに、複数のパーソナルコンピュータやサーバ、スーパーコンピュータを接続することで並列計算を実現するものをコンピュータ・クラスターと呼ぶ。このクラスターをインターネットなどの広域ネットワーク上に分散させるものも、広義には並列計算に属すが、分散コンピューティングあるいはグリッド・コンピューティングと呼び、並列計算とは区別することが多い。.

POWER7と並列計算 · マルチコアと並列計算 · 続きを見る »

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

POWER7とトランジスタ · トランジスタとマルチコア · 続きを見る »

アウト・オブ・オーダー実行

アウト・オブ・オーダー実行(-じっこう、out-of-order execution)とは、高性能プロセッサにおいてクロックあたりの命令実行数(IPC値)を増やし性能を上げるための手法の1つで、機械語プログラム中の命令の並び順に依らず、データなどの依存関係から見て処理可能な命令について逐次開始・実行・完了させるものである。頭文字で'OoO'あるいは'O-o-O'とも書かれる。「順序を守らない実行」の意である。 プロセッサの設計と実装において、命令レベルの並列性(Instruction-level parallelism; ILP)を高めることは1つの目標でありスーパースケーラにより1サイクルあたり2命令を越えることが可能になったが、フォンノイマンアーキテクチャの前提である逐次実行が、並列化を施す上での障壁となる。アウト・オブ・オーダー実行(以下、OoO)は、結果(意味)に影響を与えないことを保証しながら可能な限り順序に従わずどんどん実行することにより、複数命令の同時実行の可能性を広げる最適化手法の1つである。 アウト・オブ・オーダー実行に対して、順序通り実行することを、イン・オーダー実行と言う。.

POWER7とアウト・オブ・オーダー実行 · アウト・オブ・オーダー実行とマルチコア · 続きを見る »

オペレーティングシステム

ペレーティングシステム(Operating System、OS、オーエス)とは、コンピュータのオペレーション(操作・運用・運転)のために、ソフトウェアの中でも基本的、中核的位置づけのシステムソフトウェアである。通常、OSメーカーが組み上げたコンピュータプログラムの集合として、作成され提供されている。 オペレーティングシステムは通常、ユーザーやアプリケーションプログラムとハードウェアの中間に位置し、ユーザーやアプリケーションプログラムに対して標準的なインターフェースを提供すると同時に、ハードウェアなどの各リソースに対して効率的な管理を行う。現代のオペレーティングシステムの主な機能は、ファイルシステムなどの補助記憶装置管理、仮想記憶などのメモリ管理、マルチタスクなどのプロセス管理、更にはGUIなどのユーザインタフェース、TCP/IPなどのネットワーク、などがある。オペレーティングシステムは、パーソナルコンピュータからスーパーコンピュータまでの各種のコンピュータや、更にはスマートフォンやゲーム機などを含む各種の組み込みシステムで、内部的に使用されている。 製品としてのOSには、デスクトップ環境やウィンドウシステムなど、あるいはデータベース管理システム (DBMS) などのミドルウェア、ファイル管理ソフトウェアやエディタや各種設定ツールなどのユーティリティ、基本的なアプリケーションソフトウェア(ウェブブラウザや時計などのアクセサリ)が、マーケティング上の理由などから一緒に含められていることもある。 OSの中で、タスク管理やメモリ管理など特に中核的な機能の部分をカーネル、カーネル以外の部分(シェルなど)をユーザランドと呼ぶ事もある。 現代の主なOSには、Microsoft Windows、Windows Phone、IBM z/OS、Android、macOS(OS X)、iOS、Linux、FreeBSD などがある。.

POWER7とオペレーティングシステム · オペレーティングシステムとマルチコア · 続きを見る »

キャッシュメモリ

ャッシュメモリ は、CPUなど処理装置がデータや命令などの情報を取得/更新する際に主記憶装置やバスなどの遅延/低帯域を隠蔽し、処理装置と記憶装置の性能差を埋めるために用いる高速小容量メモリのことである。略してキャッシュとも呼ぶ。コンピュータは以前から記憶装置や伝送路の性能が処理装置の性能に追いつけず、この差が全体性能に対するボトルネックとされてきた(ノイマンズ・ボトルネック)。そしてムーアの法則に基づく処理装置の加速度的な高性能化により現在ではますますこの差が拡大されている。キャッシュメモリは、記憶階層の観点からこれを解消しようとするものである。 主に、主記憶装置とCPUなど処理装置との間に構成される。この場合、処理装置がアクセスしたいデータやそのアドレス、状態、設定など属性情報をコピーし保持することで、本来アクセスすべき記憶装置に代わってデータを入出力する。通常はキャッシュメモリが自動的にデータ保存や主記憶装置の代替を行うため、基本的にCPUのプログラムなど処理装置側がキャッシュメモリを意識する必要はない。 キャッシュの一般的な概念はキャッシュ (コンピュータシステム)を参照のこと。.

POWER7とキャッシュメモリ · キャッシュメモリとマルチコア · 続きを見る »

スーパーコンピュータ

ーパーコンピュータ(supercomputer)は、科学技術計算を主要目的とする大規模コンピュータである。日本国内での略称はスパコン。また、計算科学に必要となる数理からコンピュータシステム技術までの総合的な学問分野を高性能計算と呼ぶ。スーパーコンピュータでは計算性能を最重要視し、最先端の技術が積極的に採用されて作られる。.

POWER7とスーパーコンピュータ · スーパーコンピュータとマルチコア · 続きを見る »

IBM

IBM(アイビーエム、正式社名: International Business Machines Corporation)は、民間法人や公的機関を対象とするコンピュータ関連製品およびサービスを提供する企業である。本社はアメリカ合衆国ニューヨーク州アーモンクに所在する。世界170カ国以上で事業を展開している。.

IBMとPOWER7 · IBMとマルチコア · 続きを見る »

Opteron

Opteron (オプテロン)はアドバンスト・マイクロ・デバイセズ (AMD) が開発・製造・販売を手がけるマイクロプロセッサのシリーズの1つ。.

OpteronとPOWER7 · Opteronとマルチコア · 続きを見る »

Power Architecture

Power Architecture(パワーアーキテクチャ)は、IBMなどによるRISCマイクロプロセッサ(CPU)用のアーキテクチャ名である。 当初は32ビットであったが、後に64ビット化された。Power Architectureの普及団体はPower.orgで40を超える企業や組織が参加している。Power Architectureをベースにしたプロセッサには、POWER、PowerPC、PowerQUICC、Cellなどがある。 「Power Architecture」は、IBMの以前の世代の用語である「POWER architectures」とは異なる。「POWER architectures」は、IBMのPOWER、PowerPC、Cellなどの全製品の各アーキテクチャを幅広く含んだ、過去の用語である。「Power Architecture」は、プロセッサーアーキテクチャ、ソフトウェア、ツールチェーン、コミュニティ、エンドユーザー用アプライアンスなどを含んだファミリーネーム(総称)であり、製品や技術の仕様を記述した厳密な用語ではない。.

POWER7とPower Architecture · Power Architectureとマルチコア · 続きを見る »

POWER6

POWER6(パワーシックス)は、2007年からIBMが設計・製造したPower Architectureベースの64ビットマイクロプロセッサ。POWER6+(パワーシックスプラス)はその改良版。.

POWER6とPOWER7 · POWER6とマルチコア · 続きを見る »

2006年

この項目では、国際的な視点に基づいた2006年について記載する。.

2006年とPOWER7 · 2006年とマルチコア · 続きを見る »

2010年

この項目では、国際的な視点に基づいた2010年について記載する。.

2010年とPOWER7 · 2010年とマルチコア · 続きを見る »

上記のリストは以下の質問に答えます

POWER7とマルチコアの間の比較

マルチコアが93を有しているPOWER7は、42の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は9.63%です = 13 / (42 + 93)。

参考文献

この記事では、POWER7とマルチコアとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »