ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

P-群と対称群

ショートカット: 違い類似点ジャカード類似性係数参考文献

P-群と対称群の違い

P-群 vs. 対称群

数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、p-primary group)あるいは、p-群(ピーぐん、p-group)もしくは準素群(じゅんそぐん、primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。. 対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

P-群と対称群間の類似点

P-群と対称群は(ユニオンペディアに)共通で20ものを持っています: 半直積単純群同型写像対称群中心化群と正規化群二面体群クラインの四元群クレレ誌ケンブリッジ大学出版局シローの定理内部自己同型共役類元 (数学)群の中心群論輪積部分群核 (代数学)正規部分群有限単純群の分類

半直積

群論において、群の半直積(はんちょくせき、semidirect product)とは、ふたつの群から新たな群を作り出す方法の一種。 群の直積の一般化であり、通常の直積をその特別な場合として含む。.

P-群と半直積 · 半直積と対称群 · 続きを見る »

単純群

数学において、単純群 (simple group)とは、自明でない正規部分群 (それ自身と自明群 (単位群) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。 群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する浅野啓三・永尾汎 『群論』、岩波書店〈岩波全書〉、1965年、pp102-104。。.

P-群と単純群 · 単純群と対称群 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

P-群と同型写像 · 同型写像と対称群 · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

P-群と対称群 · 対称群と対称群 · 続きを見る »

中心化群と正規化群

数学、とくに群論において、群 の部分集合 の中心化群 (centralizer) とは、 の各元と可換な の元全体からなる集合であり、 の正規化群 (normalizer) とは、「全体で」 と可換な の元全体からなる集合である。 の中心化群と正規化群は の部分群であり、 の構造について知る手掛かりを得られる。.

P-群と中心化群と正規化群 · 中心化群と正規化群と対称群 · 続きを見る »

二面体群

二面体群(にめんたいぐん、dihedral group)とは、正多角形の対称性を表現した数学的対象である。より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。そのような合同変換は、回転と鏡映の二種類がある。二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。.

P-群と二面体群 · 二面体群と対称群 · 続きを見る »

クラインの四元群

ラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。 クラインの四群元の単位元以外の元の位数は、2である。 クラインの四元群の演算表は: また、交代群 A4 の正規部分群 と同型。.

P-群とクラインの四元群 · クラインの四元群と対称群 · 続きを見る »

クレレ誌

レレ誌もしくは、単にクレレとは数学誌Journal für die reine und angewandte Mathematik (純粋・応用数学雑誌の意)の通称。.

P-群とクレレ誌 · クレレ誌と対称群 · 続きを見る »

ケンブリッジ大学出版局

ンブリッジ大学出版局(Cambridge University Press)は、ケンブリッジ大学の出版事業を手がける出版社である。1534年、ヘンリー8世により特許状が発せられたのを起こりとする世界最古の出版社、かつ世界第2の規模の大学出版局であり、聖書や学術誌の出版も手掛けている。 「出版活動を通して、大学の理念である全世界における学問、知識、研究の促進を推し進めること」を使命として掲げている。これは、ケンブリッジ大学規約中の「Statute J」に規定されている。そして、「公益のため継続的に出版活動を行い、ケンブリッジという名前の評価を高めること」を目的としている。 ケンブリッジ大学出版局は、学術、教育分野の書籍の出版を行なっており、ヨーロッパ、中東、アフリカ、アメリカ、アジア太平洋といった地域で事業を展開している。世界中に50以上の事業所を持ち、2000人近くの従業員を抱え、4万以上のタイトルの書籍を発行している。その種類は、専門書、教科書、研究論文、参考書、 300近くに及ぶ学術誌、聖書、祈祷書、英語教育教材、教育ソフト、電子出版など、多岐にわたる。.

P-群とケンブリッジ大学出版局 · ケンブリッジ大学出版局と対称群 · 続きを見る »

シローの定理

数学、とくに有限群論において、シローの定理 (Sylow theorems) は、ノルウェーの数学者ルートヴィヒ・シロー (Ludwig Sylow) (1872) にちなんで名づけられている定理の集まりであり、与えられた有限群がもつ固定された位数の部分群の個数についての詳細な情報を与える。シローの定理は有限群論の基本的な部分をなし、有限単純群の分類における非常に重要な応用を持つ。 素数 p に対し、群 G のシロー p-部分群(あるいは p-シロー部分群)とは、G の極大 p-部分群である、つまり、''p''-群である(任意の元の位数が p の冪である)であるような G の部分群であって、G の他のどんな p-部分群の真部分群でないようなものである。与えられた素数 p に対するすべてのシロー p 部分群の集合を Sylp(G) と書くことがある。 シローの定理はラグランジュの定理の部分的な逆を主張する。ラグランジュの定理は任意の有限群 G に対して G のすべての部分群の位数(元の個数)は G の位数を割り切るというものであり、シローの定理は有限群 G の位数の任意の素因数 p に対して G のシロー p 部分群が存在するというものである。有限群 G のシロー p 部分群の位数は、n を G の位数における p の重複度として、pn であり、また位数 pn の任意の部分群は G のシロー p 部分群である。(与えられた素数 p に対して)群のシロー p-部分群は互いに共役である。与えられた素数 p に対して群のシロー p-部分群の個数は mod p で 1 と合同である。.

P-群とシローの定理 · シローの定理と対称群 · 続きを見る »

内部自己同型

抽象代数学において、内部自己同型写像 (inner automorphism) は、ある操作をして、次に別の操作をして、次に最初の操作の逆をするような写像である。記号では、f^ \circ g \circ f (X) のように書ける。最初の行動と後に続くその逆の行動は、全体として得る結果を変えることもあれば(「傘をさして、雨の中を歩いて、傘をとじる」というのは単に「雨の中を歩く」のとは異なる結果になる)、変えないこともある(「左手の手袋を外し、右手の手袋を外し、左手の手袋をつける」のは「右手の手袋のみを外す」のと同じ結果になる)。 より正確には、群 の内部自己同型写像 は、 の任意の元 に対し によって定義される写像である。ここで a は G の与えられた固定された元であり、群の元の作用は右に起こると考える(なのでこれを読むとすれば「a かける x かける a−1」ということになる)。 元 を一つ固定して考えるとき、元 を の による共軛 (conjugate) (あるいは は によって と共軛である)と言い、 から を得る操作 を の による共役変換 (conjugation) または相似変換 (similarity transformation) と呼ぶ(共役類も参照)。また適当な によって の形に書けるような元を総称して の共軛元 (conjugate element) と呼ぶ。 1 つの元による共役が別の 1 つの元を変えない場合(上の「手袋」の場合)と共役によって新しい元が得られる場合(「傘」の場合)を区別することはしばしば興味の対象となる。 事実、 と言うことと と言うことは同値である。したがって、恒等写像でない内部自己同型の存在と個数は、群における交換法則の成り立たなさを測るようなものである。.

P-群と内部自己同型 · 内部自己同型と対称群 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

P-群と共役類 · 共役類と対称群 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

P-群と元 (数学) · 元 (数学)と対称群 · 続きを見る »

群の中心

代数学における群 の核心または中心(ちゅうしん、center)この記法の Z はドイツ語で中心という意味の Zentrum に由来する。英語の center から のような記法が使われることも在るが、中心化群などと紛らわしい。 は の全ての元と可換となるような元全体の成す集合 である。 の中心は の部分群であり、定義からアーベル群(可換群)である。部分群としては、常に正規であり、特性的であるが必ずしも完全特性的 (fully characteristic) ではない。剰余群 は の内部自己同型群に同型である。 群 がアーベル群となることと となることとは同値である。これと正反対に、 が自明(つまり単位元のみからなる)ならば群 は中心を持たない (centerless) という。 中心に属する元はしばしば中心的 (central) であるといわれる。.

P-群と群の中心 · 対称群と群の中心 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

P-群と群論 · 対称群と群論 · 続きを見る »

輪積

数学の群論における輪積(りんせき、wreath product; リース積)は、半直積をもとにして定義される二つの群の特殊化された積である。置換群の分類においてリース積は重要な道具であり、またリース積から群の興味深い例がさまざまに構成される。 二つの群 A および H が与えられたとき、それら輪積には非制限輪積 (あるいは) と制限輪積 の二種類が考えられる。さらに ''H''-作用を持つ集合 Ω が与えられれば、 あるいは で表されるそれぞれの輪積の一般化が存在する。.

P-群と輪積 · 対称群と輪積 · 続きを見る »

部分群

二項演算 * に関して群 G が与えられたとする。 G の部分集合である H が G の部分群であるということは、 H が演算 * に関して群になるということである。より正確に表現すると、 H が G の部分群であるということは、群の演算 * を H×H (Hの直積)に制限したときに、 H における群の演算になっているということである。この関係は通常、 H ≤ G という記号で表現し、「 H は G の部分群である」と読む。 G の真部分群とは、部分群 H が G の真部分集合である(つまり H≠G である)ことである。任意の群 G に対し、G 自身と単位元のみからなる集合 は常に G の部分群である。 H が G の部分群であるとき、 G は H の拡大群であると表現する場合がある。 G が任意の半群であるときも、G の部分群の定義はそのまま通用するが、本項では群の部分群についてのみを扱うにとどめる。群 G は順序対 (G, &lowast) として記述されることもあるが、このように書くのは普通、G を台となる集合としてその上に演算 "∗" が代数的構造(あるいはもっとほかの構造)を定めるということを強調するためである。 以下では、通常の慣習に倣って ∗ を省略し、積 a ∗ b を単に ab と表記する。また、群の演算を単に「積」と表記する場合もある。.

P-群と部分群 · 対称群と部分群 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

P-群と核 (代数学) · 対称群と核 (代数学) · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

P-群と正規部分群 · 対称群と正規部分群 · 続きを見る »

有限単純群の分類

有限単純群の分類 とは、数学において全ての有限単純群を4つの大まかなクラスへと分類する定理である。 これらの群は、全ての有限群を構成する基本的な要素として見ることが出来る。 この分類定理の証明は、主に1955年から2004年に渡り出版された、100以上の著者により数百の学術誌において書かれた、計1万5000ページ以上もの成果の集大成である。 (d.1992) と、らは、この証明を整理し見通しよく改訂した「第2世代の証明」の出版を開始している。.

P-群と有限単純群の分類 · 対称群と有限単純群の分類 · 続きを見る »

上記のリストは以下の質問に答えます

P-群と対称群の間の比較

対称群が76を有しているP-群は、50の関係を有しています。 彼らは一般的な20で持っているように、ジャカード指数は15.87%です = 20 / (50 + 76)。

参考文献

この記事では、P-群と対称群との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »