ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

J-不変量とシュリニヴァーサ・ラマヌジャン

ショートカット: 違い類似点ジャカード類似性係数参考文献

J-不変量とシュリニヴァーサ・ラマヌジャンの違い

J-不変量 vs. シュリニヴァーサ・ラマヌジャン

数学では、複素変数 τ の函数としたときのフェリックス・クライン(Felix Klein)の j-不変量 (j-invariant)、(もしくは、j-函数と呼ぶこともある)とは、複素数の上半平面上に定義された のウェイト 0 のモジュラー函数を言う。j-不変量は、 であり尖点(カスプ)で一位の極を持つ以外は正則な、一意的な函数である。 の有理函数はモジュラーであり、実はすべてのモジュラー函数を与える。古典的には、-不変量は 上の楕円曲線のパラメータ化として研究されていたが、驚くべきことに、モンスター群の対称性との関係を持っている(この関係はモンストラス・ムーンシャインと呼ばれる)。 j\left(e^\right). ュリニヴァーサ・アイヤンガー・ラマヌジャン(Srinivasa Aiyangar Ramanujan、1887年12月22日 - 1920年4月26日)はインドの数学者。極めて直感的、天才的な閃きにより「インドの魔術師」の異名を取った。.

J-不変量とシュリニヴァーサ・ラマヌジャン間の類似点

J-不変量とシュリニヴァーサ・ラマヌジャンは(ユニオンペディアに)共通で3ものを持っています: モジュラー形式楕円曲線数学

モジュラー形式

モジュラー形式は、モジュラー群という大きな群についての対称性をもつ上半平面上の複素解析的函数である。歴史的には数論で興味をもたれる対象であり、現代においても主要な研究対象である一方で、代数トポロジーや弦理論などの他分野にも現れる。 モジュラー函数(modular function): ここでいうモジュラー函数以外にも、「モジュラー函数」という術語はいくつか別の意味で用いられることがあるので注意が必要である。例えば、ハール測度の理論に現れる群の共軛作用から定まる函数 Δ(g) もモジュラー函数と呼ばれることがあるが、別な概念である。は重さ 0 、つまりモジュラー群の作用に関して不変であるモジュラー形式のことを言う。そしてそれゆえに、直線束の切断としてではなく、モジュラー領域上の函数として理解することができる。また、「モジュラー函数」はモジュラー群について不変なモジュラー形式であるが、無限遠点で f(z) が正則性を満たすという条件は必要ない。その代わり、モジュラー函数は無限遠点では有理型である。 モジュラー形式論は、もっと一般の場合である保型形式論の特別な場合であり、従って現在では、離散群の豊かな理論のもっとも具体的な部分であると見ることもできる。.

J-不変量とモジュラー形式 · シュリニヴァーサ・ラマヌジャンとモジュラー形式 · 続きを見る »

楕円曲線

数学における楕円曲線(だえんきょくせん、elliptic curve)とは種数 の非特異な射影代数曲線、さらに一般的には、特定の基点 を持つ種数 の代数曲線を言う。 楕円曲線上の点に対し、積に関して、先述の点 を単位元とする(必ず可換な)群をなすように、積を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。 楕円曲線は、代数幾何学的には、射影平面 の中の三次の平面代数曲線として見ることもできる。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、 は実は射影平面の「無限遠点」である。 また、の標数が でも でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が や のとき、上の式は全ての非特異を表せるほど一般ではない(詳細な定義は以下を参照)。 が重根を持たない三次多項式として、 とすると、種数 の非特異平面曲線を得るので、これは楕円曲線である。が次数 でとすると、これも種数 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。 楕円関数論を使い、複素数上で定義された楕円曲線はトーラスのへの埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。 楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。 楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分、楕円関数を参照。 このように、楕円曲線は次のように見なすことができる。.

J-不変量と楕円曲線 · シュリニヴァーサ・ラマヌジャンと楕円曲線 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

J-不変量と数学 · シュリニヴァーサ・ラマヌジャンと数学 · 続きを見る »

上記のリストは以下の質問に答えます

J-不変量とシュリニヴァーサ・ラマヌジャンの間の比較

シュリニヴァーサ・ラマヌジャンが95を有しているJ-不変量は、37の関係を有しています。 彼らは一般的な3で持っているように、ジャカード指数は2.27%です = 3 / (37 + 95)。

参考文献

この記事では、J-不変量とシュリニヴァーサ・ラマヌジャンとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »