ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

FPGAと論理回路

ショートカット: 違い類似点ジャカード類似性係数参考文献

FPGAと論理回路の違い

FPGA vs. 論理回路

Altera Stratix IV GX FPGA FPGA(field-programmable gate array)は、製造後に購入者や設計者が構成を設定できる集積回路であり、広義にはPLD(プログラマブルロジックデバイス)の一種である。現場でプログラム可能なゲートアレイであることから、このように呼ばれている。. 論理回路(ろんりかいろ、logic circuit)は、論理演算を行う電気回路及び電子回路である。真理値の「真」と「偽」、あるいは二進法の「0」と「1」を、電圧の正負や高低、電流の方向や多少、位相の差異、パルスなどの時間の長短、などで表現し、論理素子などで論理演算を実装する。電圧の高低で表現する場合それぞれを「」「」等という。基本的な演算を実装する論理ゲートがあり、それらを組み合わせて複雑な動作をする回路を構成する。状態を持たない組み合わせ回路と状態を持つ順序回路に分けられる。論理演算の結果には、「真」、「偽」の他に「不定」がある。ラッチ回路のdon't care, フリップフロップ回路の禁止が相当する。 ここでの論理は離散(digital)であるためディジタル回路を用いる。論理演算を行うアナログ回路、「アナログ論理」を扱う回路(どちらも「アナログ論理回路」)もある。 多値論理回路も量子コンピュータで注目されている。 電気(電子)的でないもの(たとえば流体素子や光コンピューティングを参照)もある。 以下では離散なデジタル回路を扱う。.

FPGAと論理回路間の類似点

FPGAと論理回路は(ユニオンペディアに)共通で13ものを持っています: ANDゲートASIC加算器乗算器マルチプレクサマイクロプロセッサハードウェア記述言語プログラマブルロジックデバイスデジタルシグナルプロセッサフリップフロップ集積回路Static Random Access MemoryXORゲート

ANDゲート

ANDゲートは論理積の論理ゲートである。.

ANDゲートとFPGA · ANDゲートと論理回路 · 続きを見る »

ASIC

ASIC(application specific integrated circuit、特定用途向け集積回路)は電子部品の種別の1つで、特定の用途向けに複数機能の回路を1つにまとめた集積回路の総称である。通常は「エーシック」と発音され、表記する場合は日本でも「ASIC」である。.

ASICとFPGA · ASICと論理回路 · 続きを見る »

加算器

加算器(かさんき、Adder)とは、加算を行う演算装置である。この記事ではデジタル回路によるものについて説明する。アナログ回路による加算回路の一例はオペアンプ#加算回路(電圧によるもの。他に電流の加算もある)を参照。.

FPGAと加算器 · 加算器と論理回路 · 続きを見る »

乗算器

乗算器(じょうざんき)とは、二つの数について乗算を行うための電子回路であり、#デジタル乗算器と#アナログ乗算器がある。.

FPGAと乗算器 · 乗算器と論理回路 · 続きを見る »

マルチプレクサ

マルチプレクサ、多重器、多重装置、多重化装置、合波器(multiplexer)は、ふたつ以上の入力をひとつの信号として出力する機構である。通信分野では多重通信の入口の装置、電気・電子回路では複数の電気信号をひとつの信号にする回路である。しばしばMUX等と略される。.

FPGAとマルチプレクサ · マルチプレクサと論理回路 · 続きを見る »

マイクロプロセッサ

マイクロプロセッサ(Microprocessor)とは、コンピュータなどに搭載される、プロセッサを集積回路で実装したものである。 マイクロプロセッサは小型・低価格で大量生産が容易であり、コンピュータのCPUの他、ビデオカード上のGPUなどにも使われている。また用途により入出力などの周辺回路やメモリを内蔵するものもあり、一つのLSIでコンピュータシステムとして動作するものを特にワンチップマイコンと呼ぶ。マイクロプロセッサは一つのLSIチップで機能を完結したものが多いが、複数のLSIから構成されるものもある(チップセットもしくはビットスライスを参照)。 「CPU」、「プロセッサ」、「マイクロプロセッサ」、「MPU」は、ほぼ同義語として使われる場合も多い。本来は「プロセッサ」は処理装置の総称、「CPU」はシステム上で中心的なプロセッサ、「マイクロプロセッサ」および「MPU(Micro-processing unit)」はマイクロチップに実装されたプロセッサである。本項では、主にCPU用のマイクロプロセッサについて述べる。 当初のコンピュータにおいて、CPUは真空管やトランジスタなどの単独素子を大量に使用して構成されたり、集積回路が開発されてからも、たくさんの集積回路の組み合わせとして構成されてきた。製造技術の発達、設計ルールの微細化が進むにつれてチップ上に集積できる素子の数が増え、一つの大規模集積回路にCPU機能を納めることが出来るようになった。汎用のマイクロプロセッサとして最初のものは、1971年にインテルが開発したIntel 4004である。このマイクロプロセッサは当初電卓用に開発された、性能が非常に限られたものであったが、生産や利用が大幅に容易となったため大量に使われるようになり、その後に性能は著しく向上し、価格も低下していった。この過程でパーソナルコンピュータやRISCプロセッサも誕生した。ムーアの法則に従い、集積される素子数は増加し続けている。現在ではマイクロプロセッサは、大きなメインフレームから小さな携帯電話や家電まで、さまざまなコンピュータや情報機器に搭載されている。.

FPGAとマイクロプロセッサ · マイクロプロセッサと論理回路 · 続きを見る »

ハードウェア記述言語

ハードウェア記述言語(ハードウェアきじゅつげんご、hardware description language、HDL)は、デジタル回路、特に集積回路を設計するためのコンピュータ言語ないしドメイン固有言語(DSL)である。回路の設計、構成を記述する。処理を検証するための試験(テストベンチ)記述ができ、シミュレーションできる開発環境もある。 プログラミング言語との類似性が見られる機能がある言語もあることから、プログラミング言語の一種などとする誤解が非常に多いが、間違いである。また、プログラマブルロジックコントローラの記述に用いられるラダー言語は別のものと扱われている。.

FPGAとハードウェア記述言語 · ハードウェア記述言語と論理回路 · 続きを見る »

プログラマブルロジックデバイス

プログラマブルロジックデバイス (programmable logic device: PLD) は、製造後にユーザの手許で内部論理回路を定義・変更できる集積回路である。.

FPGAとプログラマブルロジックデバイス · プログラマブルロジックデバイスと論理回路 · 続きを見る »

デジタルシグナルプロセッサ

デジタルシグナルプロセッサ(digital signal processor、DSP)は、デジタル信号処理に特化したマイクロプロセッサであり、一般にリアルタイムコンピューティングで使われる。.

FPGAとデジタルシグナルプロセッサ · デジタルシグナルプロセッサと論理回路 · 続きを見る »

フリップフロップ

''R1, R2''.

FPGAとフリップフロップ · フリップフロップと論理回路 · 続きを見る »

集積回路

SOPパッケージに封入された標準ロジックICの例 集積回路(しゅうせきかいろ、integrated circuit, IC)は、主としてシリコン単結晶などによる「半導体チップ」の表面および内部に、不純物の拡散による半導体トランジスタとして動作する構造や、アルミ蒸着とエッチングによる配線などで、複雑な機能を果たす電子回路の多数の素子が作り込まれている電子部品である。多くの場合、複数の端子を持つ比較的小型のパッケージに封入され、内部で端子からチップに配線されモールドされた状態で、部品・製品となっている。.

FPGAと集積回路 · 論理回路と集積回路 · 続きを見る »

Static Random Access Memory

NESクローンに使われていた2K×8ビットSRAM Static RAM・SRAM(スタティックラム・エスラム)は、半導体メモリの一種である。ダイナミックRAM (DRAM) とは異なり、定期的なリフレッシュ(回復動作)が不要であり、内部構造的に長くても1秒〜10秒、通常は確実さのために、もっと短い間隔でリフレッシュ動作が必要で漏れ電流などにより電荷が失われる、集積回路中の素子の寄生容量を利用するという「ダイナミック」な方式であるのに対し、-->フリップフロップ等の順序回路という「スタティック(静的)な回路方式により情報を記憶するもの」であることからその名がある。「データ残留現象」といった性質が無いわけでもないが、基本的に電力の供給がなくなると記憶内容が失われる揮発性メモリ(volatile memory)である。但し原理上、アクセス動作が無ければ極く僅かな電力のみで記憶を保持できるため、比較的大容量のキャパシタを電池交換中のバックアップとしたり、保存性のよい電池を組み合わせて不揮発性メモリのように利用したりといった利用法もある(特に後者はフラッシュメモリ一般化以前に、ゲーム機などのカートリッジ内のセーブデータ用に多用された)。 ランダムアクセスメモリ(Random Access Memory)ではあるが、ランダムアクセスだからそう呼ばれているのではないので本来の語義からはほぼ完全に誤用として、読み書き可能という意味で慣用的にRAMと呼ばれているものである、という点についてはDRAMと同様である。.

FPGAとStatic Random Access Memory · Static Random Access Memoryと論理回路 · 続きを見る »

XORゲート

XORゲートは排他的論理和の論理ゲートである。右に真理値表を挙げる。2入力の場合、入力の片方がHighで、かつ、もう片方はLowのとき、Highを出力する。入力が両方Highまたは両方Lowのときは、Lowを出力する。メーカー等によってはEORゲートまたはExORゲートとも呼んでいる。出力が、これの反転になるものをXNOR等と呼ぶ。 排他的論理和は2を法とする(繰り上がりを無視した)加算と同じものである。すなわち、半加算器には加算結果とキャリーの2つの出力があるが、そのうちの加算結果はXOR(と同じ)である。XOR(排他的論理和)の積和標準形はA \cdot \overline + \overline \cdot Bである。 XORの通常の出力の他、入力のうちのどちらか片方をそのまま(またはその反転を)出力する2入力2出力の演算は、制御NOT(CN)と呼ばれる可逆計算になる。.

FPGAとXORゲート · XORゲートと論理回路 · 続きを見る »

上記のリストは以下の質問に答えます

FPGAと論理回路の間の比較

論理回路が90を有しているFPGAは、77の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は7.78%です = 13 / (77 + 90)。

参考文献

この記事では、FPGAと論理回路との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »