ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

EDSACとアセンブリ言語

ショートカット: 違い類似点ジャカード類似性係数参考文献

EDSACとアセンブリ言語の違い

EDSAC vs. アセンブリ言語

EDSAC EDSAC(エドサック、Electronic Delay Storage Automatic Calculator)は、初期のイギリスのコンピュータのひとつ。このマシンはジョン・フォン・ノイマンがまとめたEDVACレポート(:en:First Draft of a Report on the EDVAC)に刺激され、モーリス・ウィルクスとケンブリッジ大学の数学研究所のチームが開発した。EDSACは、世界初の実用的なプログラム内蔵方式の電子計算機であるが、プログラム内蔵方式の世界初の稼働したマシンではない。 プロジェクトは J. Lyons & Co. モトローラ MC6800 のアセンブリ言語のソースコード アセンブリ言語(アセンブリげんご、英: assembly language)とは、コンピュータ、マイクロコントローラ、その他のプログラム可能な機器を動作させるための機械語を人間にわかりやすい形で記述する、代表的な低水準言語である。なお、英語の assembly とは「組立」という意味である。.

EDSACとアセンブリ言語間の類似点

EDSACとアセンブリ言語は(ユニオンペディアに)共通で14ものを持っています: ALGOL二進法ノイマン型レジスタ (コンピュータ)プログラム内蔵方式アキュムレータ (コンピュータ)オペレーティングシステムコンピュータコンピュータゲームジョン・フォン・ノイマンサブルーチン計算機科学高水準言語自己書き換えコード

ALGOL

ALGOL(アルゴル)は、命令型プログラミング言語ファミリーの1つファミリー名は大文字/小文字をまじえて表記される場合 と、全て大文字で表記される場合 (ALGOL 68) がある。本項目では ALGOL で統一する。。名前「ALGOL」は「アルゴリズム言語」を意味する英語「algorithmic language」に由来する。1950年代中ごろに開発され、多くの言語に影響を及ぼし、ACMや教科書や学術論文などでアルゴリズム記述のデファクトスタンダードとして30年以上使われた。現代の多くの言語が「ALGOL系」あるいは「ALGOL風」(algol-like) とされているという意味で、ほぼ同世代の高水準言語である FORTRAN、LISP、COBOL に比べて最も成功したと言うこともできる。FORTRANで明らかとなった問題を防ぐよう設計され、BCPL、B、Pascal、Simula、Cといった様々なプログラミング言語に影響を与えた。ALGOLはLisp以外としては「begin と end で囲む」という構文によるブロック構造を導入し、制御構造を自在に入れ子(ネスト)にできる初の広まった言語となったFORTRANにはそのような構造は無い。COBOLではピリオドで全ての入れ子が終端するという仕様だったため(現在はend-ifなどを使う)、入れ子で書ける論理に制限があり、酷いバグの原因にもなりやすかった。。また構文の形式的定義を真剣に検討した最初のプログラミング言語でもあり、"Algol 60 Report" で導入されたバッカス・ナウア記法は、その後のコンピュータ言語等の構文の形式的定義を示す手法として(プログラミング言語だけに限られず)定番の記法となっている。.

ALGOLとEDSAC · ALGOLとアセンブリ言語 · 続きを見る »

二進法

二進法(にしんほう)とは、2 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。 英語でバイナリ (binary) という。binaryという語には「二進法」の他に「二個一組」「二個単位」といったような語義もある(例: バイナリ空間分割)。.

EDSACと二進法 · アセンブリ言語と二進法 · 続きを見る »

ノイマン型

ノイマン型(-がた、von Neumann architecture)は、コンピュータの基本的な構成法のひとつである。今日では基本的なコンピュータ・アーキテクチャのひとつとされるが、そもそもコンピュータの要件とされることもあり、このあたりの定義は循環的である。 プログラム内蔵方式のディジタルコンピュータで、CPU(中心となるプロセッサ、今日では一つの部品としてまとめて考えることが多いが、オリジナルの報告書では制御装置と演算装置に分けている)とアドレス付けされた記憶装置とそれらをつなぐバスを要素に構成され、命令(プログラム)とデータを区別せず記憶装置に記憶する。 プログラムカウンタを構成要素に含め、またより抽象的なモデルにおける命令スケジューラの実装とみることがある。また、今日では、演算などの命令の実行は演算装置を含む実行ユニットで行われる、というように考えられることもある。 オリジナルの報告書では、入出力について特別に扱っているが、今日の視点からではメモリマップドI/Oを考えれば特に必要ない。また、バスは、報告書では明示的に数え上げてはいないが(言及はある)、今日ではフォン・ノイマン・ボトルネックのように明確に認識される存在である。 ノイマン型の名は、最初にこれを広めたEDVACに関する報告書 w:First Draft of a Report on the EDVAC(1945)の著者がジョン・フォン・ノイマン(ひとり)になっていることに由来する。誰がなんのためにそうしたかについては諸説ある。このアイディア、特にプログラム内蔵方式のアイディアは、ジョン・モークリーとジョン・エッカートによるENIACのプロジェクト中の検討にその芽があった。ノイマンは(理論的な、とされる)助言役として加わり、執筆者はノイマンであった。誰にどのような功績があったかは諸説ある。 この方式について、以後のコンピュータ研究開発に大きな影響を与えた1946年夏のムーアスクールで講義したのは、ノイマンではなくモークリーとエッカートであったし、ノイマン型という用語は不当だとして、使わない者もいる。一方で、EDSACの設計・建造者であるモーリス・ウィルクスは、ENIACが軍事機密の下にあった時に、ノイマンの草稿がその保護に入らず、多くの人がノイマンを発明者だとみなしたことは不公平な結果だったとし、ノイマンの参加以前に本質的な先進があった、としながらも、数値データと命令を同じ記憶装置の中に置くのは不自然である、とか、そのために必要な遅延記憶装置は信頼性に欠ける、といった、新規技術への疑念に対し、物理学者として、また数学者(計算理論)として、ノイマンが計算機の潜在能力を見抜き、信望と影響力を行使したことは重要だった、とも述べている。.

EDSACとノイマン型 · アセンブリ言語とノイマン型 · 続きを見る »

レジスタ (コンピュータ)

レジスタ(register)はコンピュータのプロセッサなどが内蔵する記憶回路で、制御装置や演算装置や実行ユニットに直結した、操作に要する速度が最速の、比較的少量のものを指す。.

EDSACとレジスタ (コンピュータ) · アセンブリ言語とレジスタ (コンピュータ) · 続きを見る »

プログラム内蔵方式

プログラム内蔵方式(プログラムないぞうほうしき)、ストアドプログラム方式は、主記憶に置かれたプログラムを実行する、という、コンピュータ・アーキテクチャの方式の一つである。 ノイマン型アーキテクチャに内包されるため、また、このような分類が議論になるような初期の計算機において、プログラム内蔵でプログラムは全てROMに置いた、というものはないため、ノイマン型で実現されるプログラムが書き換え可能という性質を含めて指すこともある。 しかし、プログラム内蔵方式か否かについては、今日一般に、プログラムを置く記憶装置が書き換え可能か否かは問わず、またいわゆるハーバード・アーキテクチャも普通プログラム内蔵方式とすることが多い。一方、プログラムを内蔵している、と見えるものの一種であるが、記憶装置に置かれた命令ではなく、ワイヤードロジックでプログラミングをしているものは普通プログラム内蔵方式としない。 プログラムを置く直接の記憶装置が、CPUが普通に読む(読み書きする)電子的(ないし電気的)な主記憶か、そうでない補助記憶か、という点は、今日そんなデザインはまずないが、この分類では重視する。次のような歴史的理由による。 歴史的には、初期のプログラム駆動型の計算機には、主記憶(ROM含む)はデータの置き場としてのみ使い、プログラムは全てパンチカードや鑽孔テープのような補助記憶で与えられ、それを直接読み込みながら実行する、というものがあった。当然ながらジャンプが極端に制限されるなどプログラミング的に非常に制限され、プログラムの実行速度が読み込み装置の速度に制限されるため、すぐに古いデザインとみなされるようになった。そのような設計を、プログラム内蔵方式でない、とする分類であった。電子式でない、リレーを使ったコンピュータなど、機器自体の動作が紙テープリーダと比してたいして速くなく、素子のコストが記憶装置として使うには高い機械では、テープを直接実行するものが多かった。リレー式コンピュータの例としては、日本で建造されたものにFACOM 128やETL MarkIとIIがある。.

EDSACとプログラム内蔵方式 · アセンブリ言語とプログラム内蔵方式 · 続きを見る »

アキュムレータ (コンピュータ)

アキュムレータ(Accumulator)は、コンピュータにおいて、演算装置による演算結果を累積する、すなわち総和を得るといったような計算に使うレジスタや変数のことである。特にプロセッサにあるそのようにして使える唯一のレジスタを指すことがあるがその意味では、ジャーゴンファイルのaccumulatorの項の冒頭に "Archaic term for a register." とあるように、基本的には古語である。 しかし、現代のプロセッサでもx86プロセッサにはアキュムレータマシン(後述)風のところがある。AXレジスタ(8ビットプロセッサ時代のAレジスタに由来する。32ビットではEAX)がアキュムレータ的に扱われており、初期の命令セットでは一部の命令(代表的なものはMULとDIV)のソースの一方およびデスティネーションが暗黙でAXとDXに固定されている、AXを対象とする命令には短縮形がある、などのように、AXレジスタにアキュムレータとしての特別扱いがあった。後に拡張されるに従い、アセンブリ言語レベルでは任意の命令に任意のオペランドが指定できるようになりこの特徴は見えなくなった。しかし、機械語レベルでは後方互換性を保っているのでこの特徴は残っている。また、AXレジスタは関数の返り値を格納するレジスタとして使われるなど「よく使われるレジスタ」であり、そういった意味でこの語が使われることもある。.

EDSACとアキュムレータ (コンピュータ) · アキュムレータ (コンピュータ)とアセンブリ言語 · 続きを見る »

オペレーティングシステム

ペレーティングシステム(Operating System、OS、オーエス)とは、コンピュータのオペレーション(操作・運用・運転)のために、ソフトウェアの中でも基本的、中核的位置づけのシステムソフトウェアである。通常、OSメーカーが組み上げたコンピュータプログラムの集合として、作成され提供されている。 オペレーティングシステムは通常、ユーザーやアプリケーションプログラムとハードウェアの中間に位置し、ユーザーやアプリケーションプログラムに対して標準的なインターフェースを提供すると同時に、ハードウェアなどの各リソースに対して効率的な管理を行う。現代のオペレーティングシステムの主な機能は、ファイルシステムなどの補助記憶装置管理、仮想記憶などのメモリ管理、マルチタスクなどのプロセス管理、更にはGUIなどのユーザインタフェース、TCP/IPなどのネットワーク、などがある。オペレーティングシステムは、パーソナルコンピュータからスーパーコンピュータまでの各種のコンピュータや、更にはスマートフォンやゲーム機などを含む各種の組み込みシステムで、内部的に使用されている。 製品としてのOSには、デスクトップ環境やウィンドウシステムなど、あるいはデータベース管理システム (DBMS) などのミドルウェア、ファイル管理ソフトウェアやエディタや各種設定ツールなどのユーティリティ、基本的なアプリケーションソフトウェア(ウェブブラウザや時計などのアクセサリ)が、マーケティング上の理由などから一緒に含められていることもある。 OSの中で、タスク管理やメモリ管理など特に中核的な機能の部分をカーネル、カーネル以外の部分(シェルなど)をユーザランドと呼ぶ事もある。 現代の主なOSには、Microsoft Windows、Windows Phone、IBM z/OS、Android、macOS(OS X)、iOS、Linux、FreeBSD などがある。.

EDSACとオペレーティングシステム · アセンブリ言語とオペレーティングシステム · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

EDSACとコンピュータ · アセンブリ言語とコンピュータ · 続きを見る »

コンピュータゲーム

ンピュータゲーム(computer game)はコンピュータによって処理されるゲームのことである。ゲーム機の記事も参照。 形態によって、アーケードゲーム、コンシューマーゲーム(テレビゲーム、携帯型ゲーム)、パソコンゲーム、携帯電話ゲームなどの分類がある。ゲーム画面をビデオモニターに出力するためビデオゲーム等とも。また、いわゆるLSIゲームも含め電子ゲームと呼ばれる場合もある。 コンピュータ化したものという意味合いで「デジタルゲーム」などと呼び、コンピュータゲーム以外のゲームを「アナログゲーム」と呼ぶ向きもあるが、「デジタル」や「アナログ」という語の本来の意味からは離れた表現である。 なお、日本(日本語)の「コンピュータゲーム」と、英語圏(英語)の "computer game" はやや意味合いが異なる。日本の「コンピュータゲーム」に近いのは英語圏の "video game" である一方、英語圏の "computer game" は日本の「パソコンゲーム」に近い意味である。.

EDSACとコンピュータゲーム · アセンブリ言語とコンピュータゲーム · 続きを見る »

ジョン・フォン・ノイマン

ョン・フォン・ノイマン(ハンガリー名:Neumann János(ナイマン・ヤーノシュ、)、ドイツ名:ヨハネス・ルートヴィヒ・フォン・ノイマン、John von Neumann, Margittai Neumann János Lajos, Johannes Ludwig von Neumann, 1903年12月28日 - 1957年2月8日)はハンガリー出身のアメリカ合衆国の数学者。20世紀科学史における最重要人物の一人。数学・物理学・工学・計算機科学・経済学・気象学・心理学・政治学に影響を与えた。第二次世界大戦中の原子爆弾開発や、その後の核政策への関与でも知られる。.

EDSACとジョン・フォン・ノイマン · アセンブリ言語とジョン・フォン・ノイマン · 続きを見る »

サブルーチン

ブルーチン(subroutine)は、コンピュータプログラミングにおいて、プログラム中で意味や内容がまとまっている作業をひとつの手続きとしたものである。繰り返し利用されるルーチン作業をモジュールとしてまとめたもので、呼び出す側の「主」となるもの(メインルーチン)と対比して「サブルーチン」と呼ばれる。サブプログラム (subprogram) と呼ばれることもある。また、「サブ」をつけずに「ルーチン」と呼ぶこともある。 プログラムのソース中で、繰り返し現れる作業をサブルーチン化することで、可読性や保守性を高く保つことができる。繰り返し現れる作業でなくても、意味的なまとまりを示すためにサブルーチン化することもある。また、キャッシュのような階層的メモリの設計を持つコンピュータ(現在のパソコンやワークステーションなどほぼすべて)では、よく使われるサブルーチンがキャッシュに格納されることで高速な動作を期待できる。.

EDSACとサブルーチン · アセンブリ言語とサブルーチン · 続きを見る »

計算機科学

計算機科学(けいさんきかがく、computer science、コンピュータ科学)とは、情報と計算の理論的基礎、及びそのコンピュータ上への実装と応用に関する研究分野である。計算機科学には様々な下位領域がある。コンピュータグラフィックスのように特定の処理に集中する領域もあれば、計算理論のように数学的な理論に関する領域もある。またある領域は計算の実装を試みることに集中している。例えば、プログラミング言語理論は計算を記述する手法に関する学問領域であり、プログラミングは特定のプログラミング言語を使って問題を解決する領域である。.

EDSACと計算機科学 · アセンブリ言語と計算機科学 · 続きを見る »

高水準言語

水準言語(high-level programming language: こうすいじゅんげんご、高級言語とも)とは、記述の抽象度が高いプログラミング言語のことである。対義語は機械語やアセンブリ言語を指す「低水準言語」である。「高級言語」の対は「低級言語」である。.

EDSACと高水準言語 · アセンブリ言語と高水準言語 · 続きを見る »

自己書き換えコード

自己書き換えコード(じこかきかえコード、self-modifying code)とは、目的を問わず実行時に自分自身の命令を書き換えるコードを指す。 自己書き換えコードはアセンブリ言語を使用すると簡単に記述できる(CPUのキャッシュを考慮する必要がある)。 また、SNOBOL4やLISPのようなインタプリタ型の高級言語でもサポートされている。また、COBOLには ALTER という命令が存在していた。 コンパイラで実装するのは難しいが、CLIPPERとSPITBOLではその試みが行われている。 バッチスクリプトも自己書き換えコードを頻繁に使用する。 再構成可能コンピューティングは、言ってみれば「自己書き換えハードウェア」である。 再構成可能コンピューティングはソフトウェアとハードウェアの境界を曖昧にする概念である。.

EDSACと自己書き換えコード · アセンブリ言語と自己書き換えコード · 続きを見る »

上記のリストは以下の質問に答えます

EDSACとアセンブリ言語の間の比較

アセンブリ言語が197を有しているEDSACは、70の関係を有しています。 彼らは一般的な14で持っているように、ジャカード指数は5.24%です = 14 / (70 + 197)。

参考文献

この記事では、EDSACとアセンブリ言語との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »