ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

BCS理論と場の量子論

ショートカット: 違い類似点ジャカード類似性係数参考文献

BCS理論と場の量子論の違い

BCS理論 vs. 場の量子論

BCS理論(ビーシーエスりろん、BCS theory、Bardeen Cooper Schrieffer)とは、1911年の超伝導現象発見以来、初めてこの現象を微視的に解明した理論。1957年に米国、イリノイ大学のジョン・バーディーン、レオン・クーパー、ジョン・ロバート・シュリーファーの三人によって提唱された。三人の名前の頭文字からBCSと付けられた。この理論によると超伝導転移温度や比熱などが、式により表される。三人はこの業績により1972年のノーベル物理学賞を受賞した。. 場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

BCS理論と場の量子論間の類似点

BCS理論と場の量子論は(ユニオンペディアに)共通で3ものを持っています: 生成消滅演算子超伝導電子

生成消滅演算子

生成消滅演算子(せいせいしょうめつえんざんし、creation and annihilation operators)は、量子的な調和振動子や多体問題など、量子論において基本変数として広く使われる演算子である。 量子論では、正準変数で量子化することでできた量子論を、生成消滅演算子を基本変数にした量子論に書き換えることがしばしば行われる。 消滅演算子は、状態の粒子の数を1だけ減らす演算子である。 生成演算子は、状態の粒子の数を1だけ増やす演算子で、消滅演算子のエルミート共役をとったものである。 生成消滅演算子は様々な粒子の状態に作用することができる。 例えば、量子化学や多体理論において、生成消滅演算子は電子状態に作用される。 ボース粒子における生成消滅演算子の扱いは、量子的な調和振動子における扱いと同様である。 例えば、同じボース粒子状態に関連する生成消滅演算子の交換子は1に等しく、他のすべての交換子は0である。 一方、フェルミ粒子では状況が異なり、交換子のかわりに反交換子が含まれている。.

BCS理論と生成消滅演算子 · 場の量子論と生成消滅演算子 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

BCS理論と超伝導 · 場の量子論と超伝導 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

BCS理論と電子 · 場の量子論と電子 · 続きを見る »

上記のリストは以下の質問に答えます

BCS理論と場の量子論の間の比較

場の量子論が96を有しているBCS理論は、32の関係を有しています。 彼らは一般的な3で持っているように、ジャカード指数は2.34%です = 3 / (32 + 96)。

参考文献

この記事では、BCS理論と場の量子論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »