ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

3C 273

索引 3C 273

3C 273 は、おとめ座に位置するクエーサーである。初めて確認されたクエーサーでもある。 クエーサーの中では可視光では全天一明るく(見かけの等級 12.9等)、最も近くにある(赤方偏移0.158 )。赤方偏移から計算した光度距離はDL.

39 関係: おとめ座偏光とかげ座BL可視光線太陽質量変光星マーテン・シュミットチャンドラ (人工衛星)ネイチャーハッブル宇宙望遠鏡ポルックス (恒星)ブラックホールブレーザーパークス天文台パーセクヒッパルコス星表ガンマ線クエーサースペクトルセイファート銀河光年光度距離光速荷電粒子超長基線電波干渉法赤外線赤緯赤方偏移降着円盤J2000.0X線掩蔽恒星欧州宇宙機関波長望遠鏡放射光3C 48

おとめ座

おとめ座(乙女座、)は、黄道十二星座の1つ。トレミーの48星座の1つでもある。全天でうみへび座に次いで2番目に広い星座である。現在秋分点がある。 α星は、全天21の1等星の1つであり、スピカと呼ばれる。スピカと、うしかい座のα星アークトゥルス、しし座のβ星デネボラで、春の大三角を形成する。.

新しい!!: 3C 273とおとめ座 · 続きを見る »

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: 3C 273と偏光 · 続きを見る »

とかげ座BL

とかげ座BL (BL Lacertae, BL Lac) は、大きな光度変化を示す活動銀河核 (AGN) である。クーノ・ホフマイスターにより1929年に発見されたが、当初は銀河系内の不規則型の変光星であると考えられていたため、変光星の命名規則に沿った名前が付けられている。1968年、この天体はデービッド・ダンラップ天文台で観測を行ったジョン・シュミットにより、光度変化の大きな電波源として同定された。また暗いながらもこの天体を取り巻く母銀河も発見された。1974年、Oke とジェームズ・E・ガンはこの天体の赤方偏移を測定し、後退速度 21,000 km/s、z.

新しい!!: 3C 273ととかげ座BL · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: 3C 273と可視光線 · 続きを見る »

太陽質量

太陽質量(たいようしつりょう、Solar mass)は、天文学で用いられる質量の単位であり、また我々の太陽系の太陽の質量を示す天文定数である。 単位としての太陽質量は、惑星など太陽系の天体の運動を記述する天体暦で用いられる天文単位系における質量の単位である。 また恒星、銀河などの天体の質量を表す単位としても用いられている。.

新しい!!: 3C 273と太陽質量 · 続きを見る »

変光星

変光星(へんこうせい)は、天体の一種で、明るさ(等級)が変化するもののことである。大まかに爆発型変光星、脈動変光星、回転変光星、激変星、食変光星(食連星)、X線変光星の6種類に分類される。.

新しい!!: 3C 273と変光星 · 続きを見る »

マーテン・シュミット

マーテン・シュミット(Maarten Schmidt、1929年12月28日 - )はオランダの天文学者である。クェーサーの水素のスペクトル線の大きな赤方偏移を発見した。 フローニンゲンで生まれた。ライデン大学でヤン・オールトと研究し1956年に学位を得た。1959年にカリフォルニア工科大学で働くためにアメリカ合衆国に移り、銀河の質量の分布と運動力学について研究した後、電波星の光のスペクトルを研究した。1963年に、クエーサー3C 273の水素のスペクトル線が大きな赤方偏移を示すことを発見した。この発見は、3C273が時速44000km(光速の16%)で太陽系から遠ざかっていることを示しており、フレッド・ホイルの定常宇宙論を否定する結果であった。1991年には光速の94.5%で遠ざかるクエーサーをドナルド・シュナイダー、ジェームズ・E・ガンらと発見している。.

新しい!!: 3C 273とマーテン・シュミット · 続きを見る »

チャンドラ (人工衛星)

チャンドラX線観測衛星 240px 所属NASA, SAO, CXC 波長域X線 軌道高度10 000 km (近地点), 140 161 km (遠地点) 軌道周期3858 min, 64.3 h 打ち上げ日1999年7月23日 落下時期N/A 質量4 800 kg, 10 600 lb 別名Advanced X-ray Astrophysics Facility, AXAF ウェブページhttp://chandra.harvard.edu/ 物理特性 形式斜入射の放物面ミラー、双曲面ミラーが入れ子状に4対 口径1.2 m, 3.9 ft 集光面積0.04 m² at 1 keV, 0.4 ft² at 1 keV 焦点距離10 m, 33 ft 機器 ACIS画像分光計 HRCカメラ HETGS高分解能分光カメラ LETGS高分解能分光計 チャンドラX線観測衛星(チャンドラエックスせんかんそくえいせい、Chandra X-ray Observatory)は、1999年7月23日にNASAによって打ち上げられた人工衛星である。スペースシャトルコロンビアによって放出された。.

新しい!!: 3C 273とチャンドラ (人工衛星) · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: 3C 273とネイチャー · 続きを見る »

ハッブル宇宙望遠鏡

ハッブル宇宙望遠鏡(ハッブルうちゅうぼうえんきょう、Hubble Space Telescope、略称:HST)は、地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は宇宙の膨張を発見した天文学者・エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。.

新しい!!: 3C 273とハッブル宇宙望遠鏡 · 続きを見る »

ポルックス (恒星)

ポルックス(Pollux)は、ふたご座β星、ふたご座で最も明るい恒星で全天21の1等星の1つ。冬のダイヤモンドを形成する恒星の1つでもある。.

新しい!!: 3C 273とポルックス (恒星) · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 3C 273とブラックホール · 続きを見る »

ブレーザー

ブレーザー (blazar) は、巨大楕円銀河の中心にある大質量ブラックホールがエネルギー源となって明るく輝く天体、クエーサーの一種である。ブレーザーは宇宙で最も激しい現象の一つであり、銀河天文学における重要な研究テーマである。以下でも述べるように、ブレーザーはクエーサーの正面から見た姿を地球から捉えたものであると考えられている。 ブレーザーは、活動銀河核が放出する相対論的ジェットを進行方向正面から見ている姿であると考えられている。このため、その明るさは非常に早く変動し、また見かけのサイズも小さい。多くのブレーザーでは、ジェットの根元の数パーセクにおいて超光速現象が観測されている。 「ブレーザー」という名前は、1978年に天文学者によって提唱された。ブレーザー発見以前から、いくつかの種類の活動銀河核が発見されていた。例えば、可視光で大きな変光を見せるOVV (optically violent variable) クエーサーは活動的な電波銀河であり、それほど活動的でない電波銀河はとかげ座BL型天体と呼ばれる。双方とも、巨大楕円銀河中心部の大質量ブラックホールへの質量降着とそれにともなうエネルギー放出がその活動の原因である。OVVクエーサーと BL Lac 天体の中間の性質をもつ「中間的ブレーザー」(intermediate blazars) も稀に存在する。 ブレーザーの正体として重力レンズが挙げられることもある。数個のブレーザーについてはこれによってその性質が説明できるかもしれないが、ブレーザーの一般的な性質を説明することはできない。.

新しい!!: 3C 273とブレーザー · 続きを見る »

パークス天文台

パークス天文台(Parkes Observatory)は、オーストラリア連邦ニューサウスウェールズ州パークスにある電波天文台である。オーストラリア連邦科学産業研究機構の下部組織であるオーストラリア国立望遠鏡機構が運営を行っている。.

新しい!!: 3C 273とパークス天文台 · 続きを見る »

パーセク

パーセク(、記号: pc)は、距離を表す計量単位であり、約 (約3.26光年)である。主として天文学で使われる。 1981年までは天文学の分野に限り国際単位系 (SI) と併用してよい単位とされていたが、現在ではSIには含まれていない単位である。 年周視差が1秒角 (3600分の1度) となる距離が1パーセクである。すなわち、1天文単位 (au) の長さが1秒角の角度を張るような距離を1パーセクと定義する。 1 パーセクは次の値に等しい。.

新しい!!: 3C 273とパーセク · 続きを見る »

ヒッパルコス星表

ヒッパルコス星表(ヒッパルコスせいひょう、Hipparcos Catalogue)は118,218星が収録されている星表である。ヒッパルコス全天星図とも呼ばれる。略称はHIPとされることが多い。.

新しい!!: 3C 273とヒッパルコス星表 · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: 3C 273とガンマ線 · 続きを見る »

クエーサー

ーサーのイメージ クエーサー(Quasar)は、非常に離れた距離に存在し極めて明るく輝いているために、光学望遠鏡では内部構造が見えず、恒星のような点光源に見える天体のこと。クエーサーという語は準恒星状(quasi-stellar)の短縮形である。 強い電波源であるQSS(準恒星状電波源) (quasi-stellar radio source)と、比較的静かなQSO(準恒星状天体) (quasi-stellar object)がある。最初に発見されたのはQSSだが、QSOの方が多く発見されている。 日本語ではかつて準星などと呼ばれていた。.

新しい!!: 3C 273とクエーサー · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: 3C 273とスペクトル · 続きを見る »

セイファート銀河

イファート銀河(セイファートぎんが、Seyfert galaxy)は活動銀河の一種である。カール・セイファートが1940年代に初めて分類したことからこの名が付けられている。銀河の形態は渦巻銀河または不規則銀河で、極端に明るい中心核を持つのが特徴である。中心核の輝度は銀河本体よりも明るい場合もある。この中心核の活動性は中心に存在する大質量ブラックホールによるものと考えられている。中心核から放射される光は1年以下の時間尺度で変光することから、この光を放出している領域は直径1光年以下の非常に小さな範囲であることが示唆されている。.

新しい!!: 3C 273とセイファート銀河 · 続きを見る »

光年

光年(こうねん、light-year、Lichtjahr、記号 ly)は、主として天文学で用いられる距離(長さ)の単位であり、正確に 、約9.5兆キロメートルである。1981年まではSI併用単位であった。.

新しい!!: 3C 273と光年 · 続きを見る »

光度距離

光度距離 (こうどきょり、luminosity distance) とは、絶対等級とみかけの等級との関係を示す。.

新しい!!: 3C 273と光度距離 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: 3C 273と光速 · 続きを見る »

荷電粒子

荷電粒子(かでんりゅうし)とは、電荷を帯びた粒子のこと。通常は、イオン化した原子や、電荷を持った素粒子のことである。 核崩壊によって生じるアルファ線(ヘリウムの原子核)やベータ線(電子)は、荷電粒子から成る放射線である。質量の小さな粒子が電荷を帯びると、電場によって正と負の電荷が引き合ったり、反対に正と正、負と負が反発しあったりするクーロン力を受けたり、また磁場中でこういった粒子が運動することで進行方向とは直角方向に生じる力を受けたりする。これら2つの力をまとめてローレンツ力というが、磁場によって生じる力のほうが大きい場合には電界による力を無視して、磁場の力だけをローレンツ力と言うことがある。これはローレンツ力の定義式にある電界の項をゼロとおき(電界の影響が小さいため無視する)、磁場の影響だけを計算した結果で、近似である。詳しくはローレンツ力を参照。.

新しい!!: 3C 273と荷電粒子 · 続きを見る »

超長基線電波干渉法

VLBIを構成する電波望遠鏡群の一部(ポーランドPiwnice) 超長基線電波干渉法(ちょうちょうきせんでんぱかんしょうほう、、)は、電波天文学における天文干渉法の一種である。離れたアンテナで観測したデータを、原子時計などで計測したタイミング情報とセットにして磁気テープなどに保存し、郵送などにより1か所に集約して相関させることで像を得る手法である。 解像度は、アレイを構成するアンテナのうち、最も離れた二つの間の距離に比例する。VLBIではこの距離を、ケーブルでアンテナ同士を物理的に接続できないような長さにまで拡大することを可能にする。大きく隔たったアンテナによるVLBIで高解像度の像を得ることができるのは、1950年代にが開発したclosure phase解像技術による。VLBIは通常、ラジオ波の波長域で用いられるが、可視光領域にも応用されつつある。.

新しい!!: 3C 273と超長基線電波干渉法 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 3C 273と赤外線 · 続きを見る »

赤緯

赤緯(せきい、declination)は、天体の位置を表す値。Dec、Decl、δと略して表記される。通常、赤経と合わせて使われる。.

新しい!!: 3C 273と赤緯 · 続きを見る »

赤方偏移

赤方偏移(せきほうへんい、redshift)とは、主に天文学において、観測対象からの光(可視光だけでなく全ての波長の電磁波を含む)のスペクトルが長波長側(可視光で言うと赤に近い方)にずれる現象を指す。 波長λのスペクトルがΔλだけずれている場合、赤方偏移の量 z を と定義する。.

新しい!!: 3C 273と赤方偏移 · 続きを見る »

降着円盤

降着円盤と若い恒星からの宇宙ジェット:HH-30(上左) 降着円盤(こうちゃくえんばん、accretion disk)とは、ブラックホールや中性子星や白色矮星のようなコンパクト星に落ち込むガスや塵が、高密度天体の周りに形成する円盤のこと。 これらの物質は、コンパクト星に落下しながら差動回転運動をしている。落下運動による重力のポテンシャルの開放に加え、中心天体に近くなるほど角速度が大きくなるが、これがガスの粘性による摩擦によって次第に角運動量を失い、ついには物質は106K〜108Kもの高温となり、円盤状にとり巻きながら可視光線やX線などのさまざまな電磁波を放射する。あるいは、中心に集積された物質がなんらかの機構で降着円盤フレアや宇宙ジェットなどの形でエネルギーが放出され、ここからも電波が放出される。さらには、こうした宇宙ジェットが周囲の物質に干渉し、新たな電波源になることもある。この降着円盤は、質量を非常に効率よくエネルギーに変換し、実に全質量の約50%をエネルギーに変換できる。これは核融合(エネルギー変換効率は質量の数%)に比べてもはるかに効率的な機構である。 降着円盤を形成するには、大きな重力をもつ中心天体の周囲に十分な量の物質が何らかの形で供給されつづけていなければならない。実際の観測では、明るく輝く降着円盤を直接観測出来る場合と、降着円盤によって集積され高温となった物質が発するさまざまな電波によって間接的に観測できる場合とがある。 連星系は降着円盤を持つ条件を満たす天体であり、なかでもX線連星は典型的な系である。コンパクト星と恒星の近接連星では、恒星から重力の強いコンパクト星にガスが供給される場合がある。するとガスは角運動量を持っているためにコンパクト星に真っ直ぐ落下せず、コンパクト星を周回し、降着円盤を形成する。降着円盤内縁は高温になり、X線を放射する。これがX線連星である。 X線連星以外の降着円盤をもつ天体には、活動銀河核がある。活動銀河核の場合は、連星系よりも物質が周囲に大規模に存在しているとの仮定が必要になるが、クエーサーを含む近年の観測と研究により、強い電波源が、そのような仮定のもとで中心の強い重力源によって形成された降着円盤と宇宙ジェットにあるとの理解が進んでいる。.

新しい!!: 3C 273と降着円盤 · 続きを見る »

J2000.0

J2000.0またはJ2000とは、天文学または測量学でいう元期のひとつであり、地球時の西暦2000年1月1.5日(1月1日12:00、正午)を指す。この時刻は、協定世界時では2000年1月1日11:58:55.816 UTC、日本標準時では、2000年1月1日20:58:55.816 に当たる。なお、地球時(TT)は、過去の暦表時と連続していて、閏秒のない時刻系で、世界時(UT)より約1分進んでいる。 J2000.0元期を使う状況では、以前にはB1950.0元期が使われていた。 特に、J2000.0分点の赤道座標を指す。1992年1月1日から、B1950.0分点のものに代わり使用されている。.

新しい!!: 3C 273とJ2000.0 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 3C 273とX線 · 続きを見る »

掩蔽

1997年7月29日のアルデバランの掩蔽。アルデバランが月の暗縁から出現した直後。 掩蔽(えんぺい、)とは、ある天体が観測者と他の天体の間を通過するために、その天体が隠される現象である。.

新しい!!: 3C 273と掩蔽 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 3C 273と恒星 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: 3C 273と欧州宇宙機関 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 3C 273と波長 · 続きを見る »

月(つき、Mond、Lune、Moon、Luna ルーナ)は、地球の唯一の衛星(惑星の周りを回る天体)である。太陽系の衛星中で5番目に大きい。地球から見て太陽に次いで明るい。 古くは太陽に対して太陰とも、また日輪(.

新しい!!: 3C 273と月 · 続きを見る »

望遠鏡

望遠鏡(ぼうえんきょう)とは、遠くにある物体を可視光線・赤外線・X線・電波などの電磁波を捕えて観測する装置である。古くは「遠眼鏡(とおめがね)」とも呼ばれた。 観測に用いられる電磁波の波長により、光学望遠鏡と電波望遠鏡に大別される。電磁波を捕える方式による分類では反射望遠鏡と屈折望遠鏡がある。.

新しい!!: 3C 273と望遠鏡 · 続きを見る »

放射光

放射光(ほうしゃこう、Synchrotron Radiation)は、シンクロトロン放射による電磁波である。「光」とあるが、実際は、人工のものでは赤外線からX線、天然のものでは電波からγ線の範囲のものがあり、特に可視光に限定して呼ぶことは少ない。また、電磁波が放射される現象は他にも多くあるが、シンクロトロン放射による電磁波に限り放射光と呼ぶ。 シンクロトロン放射は、高エネルギーの電子等の荷電粒子が磁場中でローレンツ力により曲がるとき、電磁波を放射する現象である。「シンクロトロン(同期式円形加速器)」と名が付いているが成因を問わずこう呼ぶ。放射光と呼ぶのは人工のものであることが多い。.

新しい!!: 3C 273と放射光 · 続きを見る »

3C 48

3C 48は、地球から見てさんかく座の方向に地球から46億6200万光年離れたところにあるクエーサーである。初めて発見されたクエーサーである。 3C 48はアラン・サンデージによって1960年に発見された。電波源は1950年代の終わりから1960年頃までに数百個発見されていて、3C 48も電波源として発見されていた。しかし3C 48は、可視光で対応できる天体として初めて関連付けられた天体である。3C 48はスペクトル観測により、暗く青い変光星として見えた。しかし、3C 48のスペクトルには、正体不明の幅の広い輝線が多く含まれており、この奇妙なスペクトルの起源を当時説明する事は出来なかった。しかし、1963年に3C 273という電波源からも奇妙なスペクトルが発見され、大きな赤方偏移をしている事が発見された。3C 273は、後にクエーサーとして分類された最初の天体となった。よって3C 273は初めて発見されたクエーサーであるが、初めてクエーサーと確認された天体ではない。 3C 48の赤方偏移の値はz.

新しい!!: 3C 273と3C 48 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »