ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

19世紀と物理学

ショートカット: 違い類似点ジャカード類似性係数参考文献

19世紀と物理学の違い

19世紀 vs. 物理学

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。. 物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

19世紀と物理学間の類似点

19世紀と物理学は(ユニオンペディアに)共通で44ものを持っています: 原子原子物理学天体物理学天文学化学マックス・プランクマイケル・ファラデールートヴィッヒ・ボルツマンロシアヴィルヘルム・レントゲントマス・ヤングプランクの法則ニューメキシコ州アメリカ合衆国アンドレ=マリ・アンペールウィリアム・トムソンゲオルク・オームジョン・ドルトンジェームズ・プレスコット・ジュールジェームズ・クラーク・マクスウェル生物学熱力学量子論自然哲学電子電磁気学電気数学1798年1808年...1847年1855年1895年1896年1897年1904年1905年1911年1915年1925年1926年1928年1932年1945年 インデックスを展開 (14 もっと) »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

19世紀と原子 · 原子と物理学 · 続きを見る »

原子物理学

原子物理学(げんしぶつりがく、 小野周・一松信・竹内啓監訳、『英和物理・数学用語辞典』、森北出版、1989年、項目「atomic physics」より。ISBN 4-627-15070-9)は、原子を対象とする物理学である 服部武志、『旺文社物理事典』、旺文社、2010年、項目「原子物理学」より。ISBN 978-4-01-075144-2 C7342。.

19世紀と原子物理学 · 原子物理学と物理学 · 続きを見る »

天体物理学

天体物理学(てんたいぶつりがく、英語:astrophysics)は、天文学及び宇宙物理学の一分野で、恒星・銀河・星間物質などの天体の物理的性質(光度・密度・温度・化学組成など)や天体間の相互作用などを研究対象とし、それらを物理学的手法を用いて研究する学問である。宇宙物理学とも。天文学の中でも19世紀以降に始まった比較的新しい分野で、天文学の近代部門の代表的な分野と目されている。 例として、宇宙論の研究は、理論天体物理学の中で最も規模の大きな対象を扱う学問であるが、逆に宇宙論(特にビッグバン理論)では、我々が知っている最も高いエネルギー領域を扱うがゆえに、宇宙を観測することがそのまま最も微小なスケールでの物理学の実験そのものにもなっている。 実際には、ほぼ全ての近代天文学の研究は、物理学の要素を多く含んでいる。多くの国の天文学系の大学院博士課程の名称は、「天文学 (Astronomy)」や「天体物理学 (Astrophysics)」などまちまちだが、これは専攻の学問内容よりもその研究室の歴史を反映しているに過ぎない。.

19世紀と天体物理学 · 天体物理学と物理学 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

19世紀と天文学 · 天文学と物理学 · 続きを見る »

化学

化学(かがく、英語:chemistry、羅語:chemia ケーミア)とは、さまざまな物質の構造・性質および物質相互の反応を研究する、自然科学の一部門である。言い換えると、物質が、何から、どのような構造で出来ているか、どんな特徴や性質を持っているか、そして相互作用や反応によってどのように別なものに変化するか、を研究する岩波理化学辞典 (1994) 、p207、【化学】。 すべての--> 日本語では同音異義の「科学」(science)との混同を避けるため、化学を湯桶読みして「ばけがく」と呼ぶこともある。.

19世紀と化学 · 化学と物理学 · 続きを見る »

マックス・プランク

マックス・カール・エルンスト・ルートヴィヒ・プランク(Max Karl Ernst Ludwig Planck, 1858年4月23日 - 1947年10月4日)は、ドイツの物理学者で、量子論の創始者の一人である。「量子論の父」とも呼ばれている。科学の方法論に関して、エルンスト・マッハらの実証主義に対し、実在論的立場から激しい論争を繰り広げた。1918年にノーベル物理学賞を受賞。.

19世紀とマックス・プランク · マックス・プランクと物理学 · 続きを見る »

マイケル・ファラデー

マイケル・ファラデー(Michael Faraday, 1791年9月22日 - 1867年8月25日)は、イギリスの化学者・物理学者(あるいは当時の呼称では自然哲学者)で、電磁気学および電気化学の分野での貢献で知られている。 直流電流を流した電気伝導体の周囲の磁場を研究し、物理学における電磁場の基礎理論を確立。それを後にジェームズ・クラーク・マクスウェルが発展させた。同様に電磁誘導の法則、反磁性、電気分解の法則などを発見。磁性が光線に影響を与えること、2つの現象が根底で関連していることを明らかにした entry at the 1911 Encyclopaedia Britannica hosted by LovetoKnow Retrieved January 2007.

19世紀とマイケル・ファラデー · マイケル・ファラデーと物理学 · 続きを見る »

ルートヴィッヒ・ボルツマン

ウィーンにあるボルツマンの墓にはエントロピーの公式が刻まれている。 ルートヴィッヒ・エードゥアルト・ボルツマン(Ludwig Eduard Boltzmann, 1844年2月20日 - 1906年9月5日)は、オーストリア・ウィーン出身の物理学者、哲学者でウィーン大学教授。統計力学の端緒を開いた功績のほか、電磁気学、熱力学、数学の研究で知られる。.

19世紀とルートヴィッヒ・ボルツマン · ルートヴィッヒ・ボルツマンと物理学 · 続きを見る »

ロシア

ア連邦(ロシアれんぽう、Российская Федерация)、またはロシア (Россия) は、ユーラシア大陸北部にある共和制及び連邦制国家。.

19世紀とロシア · ロシアと物理学 · 続きを見る »

ヴィルヘルム・レントゲン

ヴィルヘルム・コンラート・レントゲン(、1845年3月27日 – 1923年2月10日)は、ドイツの物理学者。1895年にX線の発見を報告し、この功績により、1901年、第1回ノーベル物理学賞を受賞した。.

19世紀とヴィルヘルム・レントゲン · ヴィルヘルム・レントゲンと物理学 · 続きを見る »

トマス・ヤング

トマス・ヤング(Thomas Young, 1773年6月13日 - 1829年5月10日)は、イギリスの物理学者。 14歳の頃から語学に才能をみせた。 1792年にロンドンで医学の勉強をし、1794年にエディンバラからゲッティンゲンへ移って、1796年に医学の学位を得た。1800年にロンドンで医師を開業する。 1794年、王立協会のフェローに選出される。1801年に王立研究所の自然学の教授になり、医学の面では乱視や色の知覚などの研究をした(ヤング=ヘルムホルツの三色説)。また視覚の研究から光学の研究にむかい、光の干渉現象を再発見して(ヤングの実験)光の波動説を主張した。 弾性体力学の基本定数ヤング率に名前を残している。ほかにエネルギー (energy) という用語を最初に用い、その概念を導入した。 音楽では、鍵盤楽器の調律法のひとつであるヤング音律(ヴァロッティ=ヤング音律とも呼ばれる)を1799年に考案し、翌年発表した。これはウェル・テンペラメントの中でも調性の性格がよく表れ、かつ不協和音が最も少ない調律法であり、理想的な音律として評価する専門家もいる。現在でもヴィオラ・ダ・ガンバのフレッティングが容易なためヴァロッティ音律とならんでバロック・アンサンブルで多用されている。 またロゼッタ・ストーンなどのエジプトのヒエログリフの解読を試みたことでも知られる。.

19世紀とトマス・ヤング · トマス・ヤングと物理学 · 続きを見る »

プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

19世紀とプランクの法則 · プランクの法則と物理学 · 続きを見る »

ニューメキシコ州

ニューメキシコ州(State of New Mexico、Nuevo México)は、アメリカ合衆国南西部にある州である。州の北はコロラド州に接し、東側にはオクラホマ州とテキサス州に、西側はアリゾナ州に、南側はテキサス州およびメキシコとの国境に接している。また州の北西にはフォー・コーナーズがあり、そこでユタ州とも一点で接している。面積ではアメリカ合衆国で5番目に大きいが、人口では36番目であり、人口密度では45番目になっている。美しい景観から「Land of Enchantment(魅惑/魔法の土地)」と通称される。 州都は1607年にスペイン人が建設した歴史ある町サンタフェ市である。.

19世紀とニューメキシコ州 · ニューメキシコ州と物理学 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

19世紀とアメリカ合衆国 · アメリカ合衆国と物理学 · 続きを見る »

アンドレ=マリ・アンペール

アンドレ=マリ・アンペール(André-Marie Ampère, 1775年1月20日 - 1836年6月10日)は、フランスの物理学者、数学者。電磁気学の創始者の一人。アンペールの法則を発見した。電流のSI単位の アンペアはアンペールの名にちなんでいる。.

19世紀とアンドレ=マリ・アンペール · アンドレ=マリ・アンペールと物理学 · 続きを見る »

ウィリアム・トムソン

初代ケルヴィン男爵ウィリアム・トムソン(William Thomson, 1st Baron Kelvin OM, GCVO, PC, PRS, PRSE、1824年6月26日 - 1907年12月17日)は、アイルランド生まれのイギリスの物理学者。爵位に由来するケルヴィン卿(Lord Kelvin)の名で知られる。特にカルノーの理論を発展させた絶対温度の導入、クラウジウスと独立に行われた熱力学第二法則(トムソンの原理)の発見、ジュールと共同で行われたジュール=トムソン効果の発見などといった業績がある。これらの貢献によって、クラウジウス、ランキンらと共に古典的な熱力学の開拓者の一人と見られている。このほか電磁気学や流体力学などをはじめ古典物理学のほとんどの分野に600を超える論文を発表した。また、電磁誘導や磁気力を表すためにベクトルを使い始めた人物でもある。.

19世紀とウィリアム・トムソン · ウィリアム・トムソンと物理学 · 続きを見る »

ゲオルク・オーム

ルク・ジーモン・オーム(,, 1789年3月16日 - 1854年7月6日)は、ドイツの物理学者。 高校教師として働いていたが、当時アレッサンドロ・ボルタが発明したボルタ電池について研究を行った。独自に装置を製作し、導体にかかる電位差とそこに流れる電流には正比例の関係があるというオームの法則を発見した。これにより、電圧と電流と電気抵抗の基本的な関係が定義され、電気回路解析という分野が本当の意味で始まった。.

19世紀とゲオルク・オーム · ゲオルク・オームと物理学 · 続きを見る »

ジョン・ドルトン

ョン・ドルトン(John Dalton, 1766年9月6日 - 1844年7月27日)は、イギリスの化学者、物理学者ならびに気象学者。原子説を提唱したことで知られる。また、自分自身と親族の色覚を研究し、自らが先天色覚異常であることを発見したことによって、色覚異常を意味する「ドルトニズム (Daltonism)」の語源となった。.

19世紀とジョン・ドルトン · ジョン・ドルトンと物理学 · 続きを見る »

ジェームズ・プレスコット・ジュール

ェームズ・プレスコット・ジュール(James Prescott Joule, 1818年12月24日 - 1889年10月11日)はイギリスの物理学者。生涯、大学などの研究職に就くことなく、家業の醸造業を営むかたわら研究を行った。ジュールの法則を発見し、熱の仕事当量の値を明らかにするなど、熱力学の発展に重要な寄与をした。熱量の単位ジュールに、その名をとどめる。.

19世紀とジェームズ・プレスコット・ジュール · ジェームズ・プレスコット・ジュールと物理学 · 続きを見る »

ジェームズ・クラーク・マクスウェル

ェームズ・クラーク・マクスウェル(英:James Clerk Maxwell、1831年6月13日 - 1879年11月5日)は、イギリスの理論物理学者である。姓はマックスウェルと表記されることもある。 マイケル・ファラデーによる電磁場理論をもとに、1864年にマクスウェルの方程式を導いて古典電磁気学を確立した。さらに電磁波の存在を理論的に予想しその伝播速度が光の速度と同じであること、および横波であることを示した。これらの業績から電磁気学の最も偉大な学者の一人とされる。また、土星の環や気体分子運動論・熱力学・統計力学などの研究でも知られている。.

19世紀とジェームズ・クラーク・マクスウェル · ジェームズ・クラーク・マクスウェルと物理学 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

19世紀と生物学 · 物理学と生物学 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

19世紀と熱力学 · 熱力学と物理学 · 続きを見る »

量子論

量子論(りょうしろん)とは、ある物理量が任意の値を取ることができず、特定の離散的な値しかとることができない、すなわち量子化を受けるような全ての現象と効果を扱う学問である。粒子と波動の二重性、物理的過程の不確定性、観測による不可避な擾乱も特徴である。量子論は、マックス・プランクのまで遡る全ての理論、、概念を包括する。量子仮説は1900年に、例えば光や物質構造に対する古典物理学的説明が限界に来ていたために産まれた。 量子論は、相対性理論と共に現代物理学の基礎的な二つの柱である。量子物理学と古典物理学との間の違いは、微視的な(例えば、原子や分子の構造)もしくは、特に「純粋な」系(例えば、超伝導やレーザー光)において特に顕著である。しかし、様々な物質の化学的および物理的性質(色、磁性、電気伝導性など)のように日常的な事も、量子論によってしか説明ができない。 量子論には、量子力学と量子場理論と呼ばれる二つの理論物理学上の領域が含まれる。量子力学はの場の影響下での振る舞いを記述する。量子場理論は場も量子的対象として扱う。これら二つの理論の予測は、実験結果と驚くべき精度で一致する。唯一の欠点は、現状の知識状態では一般相対性理論と整合させることができないという点にある。.

19世紀と量子論 · 物理学と量子論 · 続きを見る »

自然哲学

自然哲学(しぜんてつがく、羅:philosophia naturalis)とは、自然の事象や生起についての体系的理解および理論的考察の総称であり、自然を総合的・統一的に解釈し説明しようとする形而上学である「自然哲学 physica; philosophia naturalis」『ブリタニカ国際大百科事典」。自然学(羅:physica)と呼ばれた。自然、すなわちありとあらゆるものごとのnature(本性、自然 英・仏: nature、Natur)に関する哲学である。しかし同時に人間の本性の分析を含むこともあり、神学、形而上学、心理学、道徳哲学をも含む。自然哲学の一面として、自然魔術(羅:magia naturalis)がある。自然哲学は、学問の各分野の間においても宇宙の様々な局面の間でも、事物が相互に結ばれているという感覚を特徴とする。 現在では、「自然科学」とほぼ同義語として限定された意味で用いられることもあるが、その範囲と意図はもっと広大である。「自然哲学」は、主にルネサンス以降の近代自然科学の確立期から19世紀初頭までの間の諸考察を指すといったほうが良いだろう。自然哲学的な観点が、より専門化・細分化された狭い「科学的な」観点に徐々に取って代わられるのは、19世紀になってからである。 自然哲学の探求者の多くは宗教的な人間であり、抑圧的な宗教者と科学者の戦いという図式ではなかった。世界は「自然という書物」であり、神のメッセージだと考えられていたのである。ヨーロッパでは近代まで、ほとんど全ての科学思想家はキリスト教を信じ実践しており、神学的真実と科学的真実の間の相互連結に疑いはなかった。ジョンズ・ホプキンス大学教授は、科学の探求に無神論的な視点が必要であるという考え方は、20世紀に作られた神話にすぎないと指摘している。.

19世紀と自然哲学 · 物理学と自然哲学 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

19世紀と電子 · 物理学と電子 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

19世紀と電磁気学 · 物理学と電磁気学 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

19世紀と電気 · 物理学と電気 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

19世紀と数学 · 数学と物理学 · 続きを見る »

1798年

記載なし。

1798年と19世紀 · 1798年と物理学 · 続きを見る »

1808年

記載なし。

1808年と19世紀 · 1808年と物理学 · 続きを見る »

1847年

記載なし。

1847年と19世紀 · 1847年と物理学 · 続きを見る »

1855年

記載なし。

1855年と19世紀 · 1855年と物理学 · 続きを見る »

1895年

記載なし。

1895年と19世紀 · 1895年と物理学 · 続きを見る »

1896年

記載なし。

1896年と19世紀 · 1896年と物理学 · 続きを見る »

1897年

記載なし。

1897年と19世紀 · 1897年と物理学 · 続きを見る »

1904年

記載なし。

1904年と19世紀 · 1904年と物理学 · 続きを見る »

1905年

記載なし。

1905年と19世紀 · 1905年と物理学 · 続きを見る »

1911年

記載なし。

1911年と19世紀 · 1911年と物理学 · 続きを見る »

1915年

記載なし。

1915年と19世紀 · 1915年と物理学 · 続きを見る »

1925年

記載なし。

1925年と19世紀 · 1925年と物理学 · 続きを見る »

1926年

記載なし。

1926年と19世紀 · 1926年と物理学 · 続きを見る »

1928年

記載なし。

1928年と19世紀 · 1928年と物理学 · 続きを見る »

1932年

記載なし。

1932年と19世紀 · 1932年と物理学 · 続きを見る »

1945年

この年に第二次世界大戦が終結したため、世界史の大きな転換点となった年である。.

1945年と19世紀 · 1945年と物理学 · 続きを見る »

上記のリストは以下の質問に答えます

19世紀と物理学の間の比較

物理学が347を有している19世紀は、1734の関係を有しています。 彼らは一般的な44で持っているように、ジャカード指数は2.11%です = 44 / (1734 + 347)。

参考文献

この記事では、19世紀と物理学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »