ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

13と25

ショートカット: 違い類似点ジャカード類似性係数参考文献

13と25の違い

13 vs. 25

13(十三、じゅうさん、とおあまりみつ)は自然数、また整数において、12 の次で 14 の前の数である。英語では (サーティン、サーティーン)と表記される。西洋を中心に「13. 25(二十五、廿五、にじゅうご、ねんご、はたちあまりいつつ)はl 、24 の次で 26 の前の数である。.

13と25間の類似点

13と25は(ユニオンペディアに)共通で34ものを持っています: 原子番号大相撲大阪市大阪府天皇奈良県中心つき四角数平方数ハーシャッド数ボクシングプロス数アメリカ合衆国アメリカ合衆国大統領クルアーンスーラ (クルアーン)内閣総理大臣全国地方公共団体コード六十四卦元素素数約数結婚記念日階乗ISO 3166-2:JPJIS X 0213Unicode横綱易経...文字参照日本数字和教皇 インデックスを展開 (4 もっと) »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

13と原子番号 · 25と原子番号 · 続きを見る »

大相撲

大相撲(おおずもう)は、.

13と大相撲 · 25と大相撲 · 続きを見る »

大阪市

大阪市(おおさかし)は、日本の近畿地方、大阪府のほぼ中央に位置する市で、同府の府庁所在地である。政令指定都市に指定されている。.

13と大阪市 · 25と大阪市 · 続きを見る »

大阪府

大阪府(おおさかふ)は、近畿地方に属する日本の都道府県の一つ。府庁所在地は大阪市。.

13と大阪府 · 25と大阪府 · 続きを見る »

天皇

天皇(てんのう)は、日本国憲法に規定された日本国および日本国民統合の象徴たる地位、または当該地位にある個人「天皇」『日本大百科全書(ニッポニカ)』 小学館。。7世紀頃に大王が用いた称号に始まり、歴史的な権能の変遷を経て現在に至っている。 今上天皇(当代の天皇)は、昭和天皇第一皇子である明仁。.

13と天皇 · 25と天皇 · 続きを見る »

奈良県

奈良県(ならけん)は、日本の都道府県の一つ。本州中西部、紀伊半島内陸部、近畿地方の中南部に位置する県である。 令制国の大和国の領域を占め、県庁所在地は奈良市。北西部の盆地部を除き、険しい山々がそびえている。都道府県面積は全国で8番目に狭く内陸8県では最も狭いが、最小の香川県の約2倍でもある。.

13と奈良県 · 25と奈良県 · 続きを見る »

中心つき四角数

中心つき四角数(ちゅうしんつきしかくすう、Centered square number)とは中心つき多角数の一種で、正方形の形に点を下図のように並べたとき、図に含まれる点の総数にあたる自然数である。中心つき四角数は無数にあり、そのなかでは1が最も小さい。 n番目の中心つき四角数は以下の式によって表すことができる。 中心つき四角数を小さいものから列挙すると次のようになる。 このうち素数は次の通り。.

13と中心つき四角数 · 25と中心つき四角数 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

13と平方数 · 25と平方数 · 続きを見る »

ハーシャッド数

ハーシャッド数(ハーシャッドすう、harshad number)とは、各位の和(数字和)が元の数の約数であるような自然数である。 例えば、195 は各位の和が 1 + 9 + 5.

13とハーシャッド数 · 25とハーシャッド数 · 続きを見る »

ボクシング

ボクシング(boxing)は、拳にグローブを着用しパンチのみを使い、相手の上半身前面と側面のみを攻撃対象とする格闘スポーツ。拳闘(けんとう)ともいう。ボクシングに似た競技はフランスのサバットのほか、タイのムエタイおよびムエタイをベースにした日本のキックボクシングやシュートボクシング等があり、それらと区別するための俗称として国際式ボクシングと呼ばれることもある。.

13とボクシング · 25とボクシング · 続きを見る »

プロス数

プロス数(ぷろすすう、Proth number)とは、以下の制約を満たす式で表される自然数Nのことである。プロス数の名は、19世紀フランスの数学者 にちなんで付けられた。.

13とプロス数 · 25とプロス数 · 続きを見る »

周(しゅう、、紀元前1046年頃 - 紀元前256年)は、中国古代の王朝。殷を倒して王朝を開いた。紀元前771年の洛邑遷都を境に、それ以前を西周、以後を東周と、2つの時期に区分される。国姓は姫(き)。周代において中国文明が成立したとみられる。.

13と周 · 25と周 · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

13とアメリカ合衆国 · 25とアメリカ合衆国 · 続きを見る »

アメリカ合衆国大統領

アメリカ合衆国大統領(アメリカがっしゅうこくだいとうりょう、, 略:"POTUS")は、アメリカ合衆国の国家元首であり行政府の長である。現職は2017年1月20日より第45代ドナルド・トランプが在任。 アメリカ合衆国大統領選挙(以下「大統領選挙」)によって選出される。.

13とアメリカ合衆国大統領 · 25とアメリカ合衆国大統領 · 続きを見る »

クルアーン

ルアーン(قرآن )あるいはコーランは、イスラム教(イスラーム)の聖典である。イスラームの信仰では、唯一不二の神(アッラーフ)から最後の預言者に任命されたムハンマドに対して下された啓示と位置付けられている。ムハンマドの生前に多くの書記によって記録され、死後にまとめられた現在の形は全てで114章からなる。 クルアーンは、読誦して音韻を踏むように書かれている。「クルアーン」という名称はアラビア語で「詠唱すべきもの」を意味し、アラビア語では正確には定冠詞を伴って「アル.

13とクルアーン · 25とクルアーン · 続きを見る »

スーラ (クルアーン)

ーラ(سورة sūrah)は、アラビア語で「柵または壁により囲まれたもの」を指す語であり、一般にアル・クルアーン(コーラン)における114の章を指す。 各スーラはさらにアーヤ(Ayah、節)に分けられる。各スーラは第一章である「開端(開扉)」を除き、概ね長いものから短いものの順に配列されている。 啓示は、マッカ啓示(Meccan sura)と、マディーナ啓示(Medinan sura、下表の右端の「*」と「**」)に、2分類されている。.

13とスーラ (クルアーン) · 25とスーラ (クルアーン) · 続きを見る »

内閣総理大臣

内閣総理大臣(ないかくそうりだいじん、prime minister of Japan)とは、日本国において行政権の属する内閣の首長たる国務大臣である(憲法第66条1項)。したがって、日本国における政府の長である。文民(憲法第66条2項)かつ国会議員の中から国会の議決で指名され(憲法第67条)、これに基いて天皇によって任命される(憲法第6条)。略称は総理大臣ないしは総理。一般的には首相、またはまれに宰相とも言う。現任は安倍晋三。.

13と内閣総理大臣 · 25と内閣総理大臣 · 続きを見る »

全国地方公共団体コード

全国地方公共団体コード(ぜんこくちほうこうきょうだんたいコード)は、日本の地方公共団体につけられた、数字3桁または5桁または6桁の符号(コード)である。コードが与えられる地方公共団体とは、都道府県・市町村・特別区、一部事務組合・地方開発事業団・広域連合、加えて、地方公共団体ではないが行政区・東京都区部である。JIS地名コード、地方自治体コード、都道府県コード、市町村コードなどと呼ばれることもある。 1968年、自治省(現総務省)が事務処理の簡素化のために導入した。1970年4月1日に行政管理庁(後の総務庁、現 総務省)が統計処理用のコードとしてこのコードを採用し、以降国勢調査などの各種統計に利用している。また、同日づけで日本工業規格(JIS)にも指定された。日本工業規格としての規格番号は当初は「JIS C 6261」であったが、1987年に日本工業規格に「部門X: 情報処理」が新設されたことに伴い「JIS X 0402」になった。 コードは3桁の数字、または、JIS X 0401(旧 JIS C 6260)に定められた都道府県コードを先行させた5桁、または、誤り検出のためのチェックディジット(JIS X 0402 での名称は「検査数字」)を続けた6桁である。以下では原則として、都道府県コードを含み検査数字を除く5桁で表す。5桁のコードを求められた場合、検査数字を除いた上5桁を記入すればよい。.

13と全国地方公共団体コード · 25と全国地方公共団体コード · 続きを見る »

六十四卦

六十四卦(ろくじゅうしけ、ろくじゅうしか)は、占いのひとつで儒教の基本経典でもある易で用いられる基本図象。 より基本的な図象である八卦を二つ重ねたもので、それぞれの組み合わせには、一つ一つ占いの文句が付せられ、それが卦辞として書かれている。さらに各卦の6爻、一つ一つにも占いの文句が爻辞としてつけられており、『易経』には全部で64の卦辞、384の爻辞が設けられている。.

13と六十四卦 · 25と六十四卦 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

13と元素 · 25と元素 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

13と素数 · 25と素数 · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

13と約数 · 25と約数 · 続きを見る »

結婚記念日

結婚記念日(けっこんきねんび)は、結婚した日を記念した日。.

13と結婚記念日 · 25と結婚記念日 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

13と階乗 · 25と階乗 · 続きを見る »

ISO 3166-2:JP

この記事は、ISOの3166-2規格の内、JPで始まるものの一覧であり、日本の都道府県のコードである。JIS規格ではJIS X 0401(全国地方公共団体コード)が対応する。始めの2文字JPはISO 3166-1による日本の国名コード。.

13とISO 3166-2:JP · 25とISO 3166-2:JP · 続きを見る »

JIS X 0213

JIS X 0213(ジス X 0213)はJIS X 0208:1997を拡張した、日本語用の符号化文字集合を規定する日本工業規格 (JIS) である。規格名称は「7ビット及び8ビットの2バイト情報交換用符号化拡張漢字集合」である。 2000年に制定、2004年、2012年に改正された。2000年に制定されたJIS X 0213:2000は通称「JIS2000」と呼ばれている。2004年に改正されたJIS X 0213:2004は通称「JIS2004」と呼ばれている。 JIS X 0208を拡張した規格で、JIS X 0208が規定する6879字の図形文字の集合に対して、日本語の文字コードで運用する必要性の高い4354字が追加され、計1万1233字の図形文字を規定する。JIS X 0208を拡張する点においてJIS X 0212:1990と同目的であるが、JIS X 0212とJIS X 0213との間に互換性はない。JIS X 0212がJIS X 0208にない文字を集めた文字集合であるのに対し、JIS X 0213はJIS X 0208を包含し更に第三・第四水準漢字などを加えた上位集合である。.

13とJIS X 0213 · 25とJIS X 0213 · 続きを見る »

Unicode

200px Unicode(ユニコード)は、符号化文字集合や文字符号化方式などを定めた、文字コードの業界規格である。文字集合(文字セット)が単一の大規模文字セットであること(「Uni」という名はそれに由来する)などが特徴である。 1980年代に、Starワークステーションの日本語化 (J-Star) などを行ったゼロックス社が提唱し、マイクロソフト、アップル、IBM、サン・マイクロシステムズ、ヒューレット・パッカード、ジャストシステムなどが参加するユニコードコンソーシアムにより作られた。1993年に、国際標準との一致が図られ、DIS 10646の当初案から大幅に変更されて、Unicodeと概ね相違点のいくつかはDIS 10646に由来する互換のISO/IEC 10646が制定された。.

13とUnicode · 25とUnicode · 続きを見る »

横綱

35代横綱・双葉山定次(在位1938 - 1945年) 横綱(よこづな)は、大相撲の力士の格付け(番付)における最高位の称号である。語源的には、横綱だけが腰に締めることを許されている白麻製の綱の名称に由来する。現行制度では横綱に降格はなく、現役引退によってのみその地位から降りる。従って、横綱になる力士はその地位にふさわしい品格と抜群の力量を要求される。 大相撲においては、横綱は、全ての力士を代表する存在であると同時に、神の依り代であることの証とされている。それ故、横綱土俵入りは、病気・故障等の場合を除き、現役横綱の義務である。 横綱は、天下無双であるという意味を込めて「日下開山」(ひのしたかいさん)と呼ばれることもある。 本場所では幕内力士として15日間毎日取組が組まれる。 なお、大関が横綱の地位を狙うことを綱取りという。.

13と横綱 · 25と横綱 · 続きを見る »

殷(いん、、紀元前17世紀頃 - 紀元前1046年)は、中国の王朝である。文献には天乙が夏を滅ぼして王朝を立てたとされ、考古学的に実在が確認されている中国最古の王朝である。商(しょう、)、商朝ともよばれる。紀元前11世紀に帝辛の代に周によって滅ぼされた(殷周革命)。.

13と殷 · 25と殷 · 続きを見る »

易経

『易経』(えききょう、正字体:易經、)は、古代中国の書物。『卜』が動物である亀の甲羅や牛や鹿の肩甲骨に入ったヒビの形から占うものであるのに対して、『筮』は植物である『蓍』の茎の本数を用いた占いである。商の時代から蓄積された卜辞を集大成したものとして易経は成立した。易経は儒家である荀子の学派によって儒家の経典として取り込まれた。現代では、哲学書としての易経と占術のテキストとしての易経が、一部重なりながらも別のものとなっている。中心思想は、陰陽二つの元素の対立と統合により、森羅万象の変化法則を説く。著者は伏羲とされている。 中国では『黄帝内經』・『山海經』と合わせて「上古三大奇書」とも呼ぶ。.

13と易経 · 25と易経 · 続きを見る »

文字参照

文字参照(もじさんしょう、character reference)とはHTMLなどのSGML文書においては、直接記述できない文字や記号(マークアップで使われる、半角の不等号「<」や「>」など)を表記する際に用いられる方法である。SGML構成素のひとつとして定義されており、文書文字集合中の文字を参照する為の手段を提供する。HTMLにおける文字参照には、表記方法により数値文字参照と文字実体参照の二種が存在する。XMLにおいては、HTMLにおける「数値文字参照」を「文字参照」と呼ぶ。なおHTMLにおける「文字実体参照」は、XMLでは実体参照と呼び区別する。.

13と文字参照 · 25と文字参照 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

13と日本 · 25と日本 · 続きを見る »

数字和

数字和(すうじわ、digit sum)とは、正の整数の各桁の数字を加算した値を意味する。一般的には「各位の和」という表現で用いられている。 例えば、84001 の数字和は 8 + 4 + 0 + 0 + 1.

13と数字和 · 25と数字和 · 続きを見る »

教皇

教皇(きょうこう、Pāpa、Πάπας Pápas、The Pope)は、キリスト教の最高位聖職者の称号。一般的にはカトリック教会のローマ司教にして全世界のカトリック教徒の精神的指導者であるローマ教皇を指す。ヴァティカン市国の首長。教皇の地位は「教皇位」、あるいは「教皇座」と呼ばれる。また、教皇の権威のことを「聖座」、「使徒座」ということもある。現在の教皇はフランシスコ(第266代)。 日本語では「ローマ法王」と表記されることも多いが、日本のカトリック教会の中央団体であるカトリック中央協議会は「ローマ教皇」の表記を推奨している(後述)。またカトリックの内部では「教父」の呼称を用いる場合もある。なお、退位した教皇の称号は名誉教皇(名誉法王とも)という。 本項では主にローマ教皇について記述する。その他の教皇については称号の変遷とその他の「教皇」の節を参照。.

13と教皇 · 25と教皇 · 続きを見る »

上記のリストは以下の質問に答えます

13と25の間の比較

25が190を有している13は、614の関係を有しています。 彼らは一般的な34で持っているように、ジャカード指数は4.23%です = 34 / (614 + 190)。

参考文献

この記事では、13と25との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »