ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

0.999...と解析学

ショートカット: 違い類似点ジャカード類似性係数参考文献

0.999...と解析学の違い

0.999... vs. 解析学

無限に 9 の続く無限小数 数学における循環十進小数 ( の前の 9 の個数は多少増減させて のようにも書く。あるいは他にも,, など多様な表記がある)は、実数として数の「イチ」であると示すことができる。言葉を変えれば、記号 "0.999⋯" と "1" は同じ数を表している。これが等しいことの証明は、実数論の展開、背景にある仮定、歴史的文脈、対象となる聞き手などに合ったレベルで、各種段階のが相応に考慮された、多様な定式化がある例えば、最初の節に挙げる「代数的証明」は「ただしい」証明だが、その証明の正当性は後の節に記す解析学的手法である極限の概念によって保証される。同様にそれら解析学的証明を「ただしい」証明たらしめているのは実数の特質に他ならない。しかし普通は、実数の公理にまでいちいち遡らずにいくつかの性質を「認めて」、そこで切り上げるのである。もちろん実数の代替となる体系において、実数と異なる性質に基づけば、それら「証明」はそのどこかが崩され、「まちがった」証明となり得る。。 任意の でない有限小数(を末尾に無限個の 0 を付けて無限小数と見たもの)は、それと値が等しい、末尾に無限個の 9 が連なる双子の表示(例えば と)を持つ。ふつうは有限小数表示が好まれることで、それが一意的な表示であるとの誤解に繋がり易い。同じ現象は、任意の別の底に関する位取り記数法や、あるいは同様の実数の表示法でも発生する。 と の等価性は、実数の体系(これは解析学ではもっとも一般的に用いられる体系である)に 0 でない無限小が存在しないことと深く関係している。一方、超実数の体系のように 0 でない無限小を含む別の数体系もある。そのような体系の大半は、標準的な解釈のもとで式 の値は に等しくなるが、一部の体系においては記号 "" に別の解釈を与えて よりも無限小だけ小さいようにすることができる。 等式 は数学者に長く受け入れられ、一般の数学教育の一部であったにも拘らず、これを十分ものと見做して、疑念や拒絶反応を示す学徒もいる。このような懐疑論は、「この等式を彼らに納得させることがいかに難しいか」が数学教育の様々な研究の主題となることに正当性を与える程度に当たり前に存在している。. 解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

0.999...と解析学間の類似点

0.999...と解析学は(ユニオンペディアに)共通で25ものを持っています: 実解析実数実数の連続性工学微分積分学リヒャルト・デーデキントレオンハルト・オイラーベルナルト・ボルツァーノイプシロン-デルタ論法オーギュスタン=ルイ・コーシーカール・ワイエルシュトラスゲオルク・カントールコーシー列写像公理的集合論級数無限小物理学複素解析超準解析自然数連続 (数学)極限数列

実解析

数学において実解析(じつかいせき、Real analysis)あるいは実関数論(じつかんすうろん、theory of functions of a real variable)は(ユークリッド空間(の部分集合)上または(抽象的な)集合上の関数)について研究する解析学の一分野である。現代の実解析では、関数として一般に複素数値関数や複素数値写像あるいは複素数値関数に値をとる写像も含む。 実解析は、元々は実1変数実数値関数あるいは実多変数実数値およびベクトルに対する初等的な微分積分を意味していた。しかし現代の実解析は、積分論のいちぶとして測度論とルベーグ積分、関数空間((超)関数の成す線型位相空間)の理論、関数不等式、特異積分作用素などを扱う。関数解析におけるバナッハ空間の理論や作用素論・調和解析のフーリエ解析などの初歩的または部分的な理論も含むとされている。 関数空間の例には、L^p空間・数列空間・ソボレフ空間・緩増加超関数の空間・ベゾフ空間・トリーベル-リゾルキン空間・実解析版ハーディー空間・実補間空間がある。関数不等式の例には、作用素の実補間または複素補間による作用素または関数の有界性の調整・関数方程式について、初期値または非斉次項(非線型項)と未知関数の、有界性や可積分性または可微分性の関係を表すL^p-L^q評価と時空分散評価および時空消散評価・時間の経過に対する、関数の可微分性または可積分性を保存する意味を持つエネルギー(不)等式などの(解の存在を前提とした)評価式(アプリオリ評価)・別々の作用素を施された関数のノルムの関係、などがある。特異積分作用素には、「積分と微分を同時にする」リース変換や、流体力学と発展方程式の理論で現れるヒルベルト変換がある。 超関数とフーリエ変換は、実解析に入るのか関数解析に入るのか数学者の間でも扱いが分かれている。さらに今ではユークリッド空間だけではなく抽象的な集合(群または位相空間あるいは関数空間など)で定義された複素数値の写像(複素数値測度、複素数値線型汎関数)も取り扱う。そして特異積分作用素を扱う理論は「関数解析」における作用素論ではなく「実解析」として扱われている。複素解析の実解析への応用は(留数定理による実関数の積分の計算が)有名だが、実解析の複素解析への応用(その計算にルベーグの収束定理を適用することによる簡易化;フーリエ変換による複素解析版ハーディー空間とL^p関数の関係など)もある。現代数学では「実解析」の範囲は明確ではなく「複素解析」とは対をなす分野ではなくなっている。 また、実解析による偏微分微分方程式の解法は、主に関数空間と関数不等式およびフーリエ変換や特異積分作用素によるもので、解が具体的に表示できることも多いが計算が多くなる場面も多い。関数解析の作用素により論理を重ねる方法(例えば、リースの表現定理・変分法・半群理論・リース-シャウダーの理論・スペクトル分解などを使う解の存在証明)とは異なるが、高等的には両者を巧みに合わせて(関連しながら)解かれている。.

0.999...と実解析 · 実解析と解析学 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

0.999...と実数 · 実数と解析学 · 続きを見る »

実数の連続性

実数の連続性(continuity of real numbers)とは、実数の集合がもつ性質である。 実数の連続性は、実数の完備性(completeness of the real numbers)とも言われる。また、実数の連続性を議論の前提とする立場であれば実数の公理と記述する場合もある。 また、実数の連続性における連続性とは関数の連続性とは別の概念である。.

0.999...と実数の連続性 · 実数の連続性と解析学 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

0.999...と工学 · 工学と解析学 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

0.999...と微分積分学 · 微分積分学と解析学 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

0.999...とリヒャルト・デーデキント · リヒャルト・デーデキントと解析学 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

0.999...とレオンハルト・オイラー · レオンハルト・オイラーと解析学 · 続きを見る »

ベルナルト・ボルツァーノ

ベルナルト・ボルツァーノ(Bernard Placidus Johann Nepomuk Bolzano,1781年10月5日 - 1848年12月18日)は、チェコの哲学者、数学者、論理学者、宗教学者。ライプニッツの哲学に影響を受け、反カント哲学の立場から、客観主義的な論理学や哲学を打ち立てた。その成果は、フランツ・ブレンターノやエトムント・フッサールらに影響を与えた。彼の名前は、ベルナルド・ボルツァーノやドイツ語圏ではベルンハルト・ボルツァーノとも呼ばれている。.

0.999...とベルナルト・ボルツァーノ · ベルナルト・ボルツァーノと解析学 · 続きを見る »

イプシロン-デルタ論法

ε-δ 論法(イプシロンデルタろんぽう、(ε, δ)-definition of limit)は、解析学において、(有限な)実数値のみを用いて極限を議論する方法である。.

0.999...とイプシロン-デルタ論法 · イプシロン-デルタ論法と解析学 · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

0.999...とオーギュスタン=ルイ・コーシー · オーギュスタン=ルイ・コーシーと解析学 · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

0.999...とカール・ワイエルシュトラス · カール・ワイエルシュトラスと解析学 · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

0.999...とゲオルク・カントール · ゲオルク・カントールと解析学 · 続きを見る »

コーシー列

解析学におけるコーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。基本列(きほんれつ、fundamental sequence)、正則列(せいそくれつ、regular sequence)、自己漸近列(じこぜんきんれつ)などとも呼ばれる。実数論において最も基本となる重要な概念の一つである。 各 ''n'' に対して順番に縦軸上にプロットしたコーシー列の例。 ''x''''n''.

0.999...とコーシー列 · コーシー列と解析学 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

0.999...と写像 · 写像と解析学 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

0.999...と公理的集合論 · 公理的集合論と解析学 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

0.999...と級数 · 級数と解析学 · 続きを見る »

無限小

数学における無限小(むげんしょう、infinitesimal)は、測ることができないほど極めて小さい「もの」である。無限小に関して実証的に観察されることは、それらが定量的にいくら小さかろうと、角度や傾きといったある種の性質はそのまま有効であることである。 術語 "infinitesimal" は、17世紀の造語 infinitesimus(もともとは列の「無限番目」の項を意味する言葉)に由来し、これを導入したのは恐らく1670年ごろ、メルカトルかライプニッツである。無限小はライプニッツがやなどをもとに展開した無限小解析における基本的な材料である。よくある言い方では、無限小対象とは「可能な如何なる測度よりも小さいが零でない対象である」とか「如何なる適当な意味においても零と区別することができないほど極めて小さい」などと説明される。故に形容(動)詞的に「無限小」を用いるときには、それは「極めて小さい」という意味である。このような量が意味を持たせるために、通常は同じ文脈における他の無限小対象と比較をすること(例えば微分商)が求められる。無限個の無限小を足し合わせることで積分が与えられる。 シラクサのアルキメデスは、自身の (機械的定理証明法)においてと呼ばれる手法を応分に用いて領域の面積や立体の体積を求めた。正式に出版された論文では、アルキメデスは同じ問題を取り尽くし法を用いて証明している。15世紀にはニコラウス・クザーヌスの業績として(17世紀にはケプラーがより詳しく調べているが)、特に円を無限個の辺を持つ多角形と見做して円の面積を計算する方法が見受けられる。16世紀における、任意の実数の十進表示に関するシモン・ステヴィンの業績によって、実連続体を考える下地はすでにでき上がっていた。カヴァリエリの不可分の方法は、過去の数学者たちの結果を拡張することに繋がった。この不可分の方法は幾何学的な図形を 1 の量に分解することと関係がある。ジョン・ウォリスの無限小は不可分とは異なり、図形をもとの図形と同じ次元の無限に細い構成要素に分解するものとして、積分法の一般手法の下地を作り上げた。面積の計算においてウォリスは無限小を 1/∞ と書いている。 ライプニッツによる無限小の利用は、「有限な数に対して成り立つものは無限な数に対しても成り立ち、逆もまた然り」有限/無限というのは個数に関して言うのではない(有限個/無限個ではない)ことに注意せよ。ここでいう「有限」とは無限大でも無限小でもないという意味である。や(割り当て不能な量を含む式に対して、それを割り当て可能な量のみからなる式で置き換える具体的な指針)というような、経験則的な原理に基づくものであった。18世紀にはレオンハルト・オイラーやジョゼフ=ルイ・ラグランジュらの数学者たちによって無限小は日常的に使用されていた。オーギュスタン=ルイ・コーシーは自身の著書 (解析学教程)で、無限小を「連続量」(continuity) ともディラックのデルタ函数の前身的なものとも定義した。カントールとデデキントがスティーヴンの連続体をより抽象的な対象として定義したのと同様に、は函数の増大率に基づく「無限小で豊饒化された連続体」(infinitesimal-enriched continuum) に関する一連の論文を著した。デュ・ボア=レーモンの業績は、エミール・ボレルとトアルフ・スコーレムの両者に示唆を与えた。ボレルは無限小の増大率に関するコーシーの仕事とデュ・ボア=レーモンの仕事を明示的に結び付けた。スコーレムは、1934年に最初の算術の超準モデルを発明した。連続の法則および無限小の数学的に厳密な定式化は、1961年にアブラハム・ロビンソンによって達成された(ロビンソンは1948年にが、および1955年にが成した先駆的研究に基づき超準解析を展開した)。ロビンソンの超実数 (hyperreals) は無限小で豊饒化された連続体の厳密な定式化であり、がライプニッツの連続の法則の厳密な定式化である。また、はフェルマーの (adequality, pseudo-equality) の定式化である。 ウラジーミル・アーノルドは1990年に以下のように書いている.

0.999...と無限小 · 無限小と解析学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

0.999...と物理学 · 物理学と解析学 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

0.999...と複素解析 · 複素解析と解析学 · 続きを見る »

超準解析

は、あるいは無限小数の意味および論理的妥当性に関する哲学的論争を孕んでいる。これらの論争の標準的な解決策は、微分積分学における操作を無限小ではなくイプシロン-デルタ論法によって定義することである。超準解析(nonstandard analysis)は代わりに論理的に厳格な無限小数の概念を用いて微分積分学を定式化する。Nonstandard Analysisは直訳すれば非標準解析学となるが、齋藤正彦が超準解析という訳語を使い始めたため、そのように呼ばれるようになった。無限小解析(infinitesimal analysis)という言葉で超準解析を意味することもある。 超準解析は1960年代に数学者アブラハム・ロビンソンによって創始せられた。 彼は次のように記述している: 無限に小さいあるいは無限小の量という概念は我々の直観に自然に訴えかけるように見える。何れにせよ、無限小の使用は、微分学・積分学の黎明期において、広く普及した。相異なる2つの実数の差が無限に小さくなることはないという 異論に対して、ゴットフリート・ライプニッツは、無限小の理論は理想的数――それは実数と比較して無限に小さかったり無限に大きかったりするものであるが、後者(訳注:実数)と同じ性質を有する――の導入を含意するものであると主張した。 ロビンソンはこのライプニッツのはの先駆けであるとしている。ロビンソンは次のように続ける: しかしながら、彼も、彼の弟子たちや後継者たちも、このようなシステムに繋がる合理的な進展(訳注:そのような原理を合理化するもの)を得なかった。その結果、無限小の理論は徐々に評判を落としてゆき、最終的には古典的な極限の理論に取って代わられた。Robinson, A.: Non-standard analysis.

0.999...と超準解析 · 解析学と超準解析 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

0.999...と自然数 · 自然数と解析学 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

0.999...と連続 (数学) · 解析学と連続 (数学) · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

0.999...と極限 · 極限と解析学 · 続きを見る »

数(かず、すう、number)とは、.

0.999...と数 · 数と解析学 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

0.999...と数列 · 数列と解析学 · 続きを見る »

上記のリストは以下の質問に答えます

0.999...と解析学の間の比較

解析学が146を有している0.999...は、142の関係を有しています。 彼らは一般的な25で持っているように、ジャカード指数は8.68%です = 25 / (142 + 146)。

参考文献

この記事では、0.999...と解析学との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »