ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

0.999...と可換体

ショートカット: 違い類似点ジャカード類似性係数参考文献

0.999...と可換体の違い

0.999... vs. 可換体

無限に 9 の続く無限小数 数学における循環十進小数 ( の前の 9 の個数は多少増減させて のようにも書く。あるいは他にも,, など多様な表記がある)は、実数として数の「イチ」であると示すことができる。言葉を変えれば、記号 "0.999⋯" と "1" は同じ数を表している。これが等しいことの証明は、実数論の展開、背景にある仮定、歴史的文脈、対象となる聞き手などに合ったレベルで、各種段階のが相応に考慮された、多様な定式化がある例えば、最初の節に挙げる「代数的証明」は「ただしい」証明だが、その証明の正当性は後の節に記す解析学的手法である極限の概念によって保証される。同様にそれら解析学的証明を「ただしい」証明たらしめているのは実数の特質に他ならない。しかし普通は、実数の公理にまでいちいち遡らずにいくつかの性質を「認めて」、そこで切り上げるのである。もちろん実数の代替となる体系において、実数と異なる性質に基づけば、それら「証明」はそのどこかが崩され、「まちがった」証明となり得る。。 任意の でない有限小数(を末尾に無限個の 0 を付けて無限小数と見たもの)は、それと値が等しい、末尾に無限個の 9 が連なる双子の表示(例えば と)を持つ。ふつうは有限小数表示が好まれることで、それが一意的な表示であるとの誤解に繋がり易い。同じ現象は、任意の別の底に関する位取り記数法や、あるいは同様の実数の表示法でも発生する。 と の等価性は、実数の体系(これは解析学ではもっとも一般的に用いられる体系である)に 0 でない無限小が存在しないことと深く関係している。一方、超実数の体系のように 0 でない無限小を含む別の数体系もある。そのような体系の大半は、標準的な解釈のもとで式 の値は に等しくなるが、一部の体系においては記号 "" に別の解釈を与えて よりも無限小だけ小さいようにすることができる。 等式 は数学者に長く受け入れられ、一般の数学教育の一部であったにも拘らず、これを十分ものと見做して、疑念や拒絶反応を示す学徒もいる。このような懐疑論は、「この等式を彼らに納得させることがいかに難しいか」が数学教育の様々な研究の主題となることに正当性を与える程度に当たり前に存在している。. 抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

0.999...と可換体間の類似点

0.999...と可換体は(ユニオンペディアに)共通で13ものを持っています: 反数実数交換法則位数モノイドイデアル (環論)ゼロ除算素数環 (数学)P進数有理数数論整数

反数

反数(はんすう、opposite)とは、ある数に対し、足すと になる数である。つまり、ある数 に対して、 となるような数 を の反数といい、 と表す。記号「−」を負号と呼び、「マイナス 」と読む。また、 は の反数であるともいえる。 は加法における単位元であるから、反数は加法における逆元である。このような加法における逆元は加法逆元(かほうぎゃくげん、additive inverse)と呼ばれる。 ある数にある数の反数を足すことを「引く」といい、減法 を以下のように定義する。 「 引く 」 または「 マイナス 」 と読む。反数に使われる「−」(負号)と引き算に使われる「−」(減算記号)をあわせて「マイナス記号」と呼ぶ。 また、反数を与える − は単項演算子と見なすことができ、単項マイナス演算子 と呼ばれる。一方、減算を表す演算子としての − は、項を 2 つとるの二項演算子なので、二項マイナス演算子 と呼ばれる。 乗法において反数に相当するものは逆数、あるいはより一般には乗法逆元 と呼ばれる。整数、有理数、実数、複素数においては、逆数は必ずしも存在しないが、反数は必ず存在する。ただし、 を含まない自然数においては反数は常に存在しない。 反数の概念はそのままベクトルに拡張することができ、反ベクトル(はんベクトル、opposite vector)と呼ばれる。ベクトルの加法における単位元はゼロ・ベクトルであり、あるベクトル に足すと を与えるベクトル を の反ベクトルという。 これを満たすベクトル は と表される。またこのとき は の反ベクトル でもある。.

0.999...と反数 · 反数と可換体 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

0.999...と実数 · 可換体と実数 · 続きを見る »

交換法則

交換法則(こうかんほうそく、Commutative property) は数学における法則の一つ。可換則(かかんそく)や交換律(こうかんりつ)ともいう。.

0.999...と交換法則 · 交換法則と可換体 · 続きを見る »

位数

数学において位数 (いすう、 order)とは,階数・次数などと同じくある種の指標 (index) として働く数に用いられる。.

0.999...と位数 · 位数と可換体 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

0.999...とモノイド · モノイドと可換体 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

0.999...とイデアル (環論) · イデアル (環論)と可換体 · 続きを見る »

ゼロ除算

算(ゼロじょざん、division by zero)は、0で除す割り算のことである。このような除算は除される数を a とするならば、形式上は と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。 コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。 しかし、浮動小数点以外の数値型(整数型など)においては多くの場合無限大に相当する値は定義されておらず、またいくつかの除算アルゴリズムの単純な実装(取尽し法など)においては無限ループに陥りかねないなど演算処理の中でも特異なふるまいとなるため、演算前にゼロ除算例外を発生させることで計算そのものを行わせないか、便宜上型が表現できる最大の数値、あるいはゼロを返すなどの特殊な処理とされる場合が多い(後述) 計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため計算不可能である。.

0.999...とゼロ除算 · ゼロ除算と可換体 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

0.999...と素数 · 可換体と素数 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

0.999...と環 (数学) · 可換体と環 (数学) · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

0.999...とP進数 · P進数と可換体 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

0.999...と有理数 · 可換体と有理数 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

0.999...と数論 · 可換体と数論 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

0.999...と整数 · 可換体と整数 · 続きを見る »

上記のリストは以下の質問に答えます

0.999...と可換体の間の比較

可換体が63を有している0.999...は、142の関係を有しています。 彼らは一般的な13で持っているように、ジャカード指数は6.34%です = 13 / (142 + 63)。

参考文献

この記事では、0.999...と可換体との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »