ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

0.999...と1

ショートカット: 違い類似点ジャカード類似性係数参考文献

0.999...と1の違い

0.999... vs. 1

無限に 9 の続く無限小数 数学における循環十進小数 ( の前の 9 の個数は多少増減させて のようにも書く。あるいは他にも,, など多様な表記がある)は、実数として数の「イチ」であると示すことができる。言葉を変えれば、記号 "0.999⋯" と "1" は同じ数を表している。これが等しいことの証明は、実数論の展開、背景にある仮定、歴史的文脈、対象となる聞き手などに合ったレベルで、各種段階のが相応に考慮された、多様な定式化がある例えば、最初の節に挙げる「代数的証明」は「ただしい」証明だが、その証明の正当性は後の節に記す解析学的手法である極限の概念によって保証される。同様にそれら解析学的証明を「ただしい」証明たらしめているのは実数の特質に他ならない。しかし普通は、実数の公理にまでいちいち遡らずにいくつかの性質を「認めて」、そこで切り上げるのである。もちろん実数の代替となる体系において、実数と異なる性質に基づけば、それら「証明」はそのどこかが崩され、「まちがった」証明となり得る。。 任意の でない有限小数(を末尾に無限個の 0 を付けて無限小数と見たもの)は、それと値が等しい、末尾に無限個の 9 が連なる双子の表示(例えば と)を持つ。ふつうは有限小数表示が好まれることで、それが一意的な表示であるとの誤解に繋がり易い。同じ現象は、任意の別の底に関する位取り記数法や、あるいは同様の実数の表示法でも発生する。 と の等価性は、実数の体系(これは解析学ではもっとも一般的に用いられる体系である)に 0 でない無限小が存在しないことと深く関係している。一方、超実数の体系のように 0 でない無限小を含む別の数体系もある。そのような体系の大半は、標準的な解釈のもとで式 の値は に等しくなるが、一部の体系においては記号 "" に別の解釈を与えて よりも無限小だけ小さいようにすることができる。 等式 は数学者に長く受け入れられ、一般の数学教育の一部であったにも拘らず、これを十分ものと見做して、疑念や拒絶反応を示す学徒もいる。このような懐疑論は、「この等式を彼らに納得させることがいかに難しいか」が数学教育の様々な研究の主題となることに正当性を与える程度に当たり前に存在している。. 一」の筆順 1(一、いち、ひと、ひとつ)は、最小の正の整数である。0 を自然数に含めない流儀では、最小の自然数とも言える。整数の通常の順序において、0 の次で 2 の前の整数である。1 はまた、実数を位取り記数法で記述するための数字の一つでもある。 「無」を意味する 0 に対して、1 は有・存在を示す最原初的な記号なので、物事を測る基準単位、つまり数や順序を数える際の初めである。英語の序数詞では、1st、first となる。ラテン語では unus(ウーヌス)で、接頭辞 uni- はこれに由来する。.

0.999...と1間の類似点

0.999...と1は(ユニオンペディアに)共通で17ものを持っています: 十進法可換体実数位取り記数法モノイド分数冪乗級数群 (数学)環 (数学)順序集合辞書式順序自然数電子掲示板整数1/2 + 1/4 + 1/8 + 1/16 + ⋯

十進法

十進法(じっしんほう、decimal system)とは、10 を底(てい)とし、底およびその冪を基準にして数を表す方法である。.

0.999...と十進法 · 1と十進法 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

0.999...と可換体 · 1と可換体 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

0.999...と実数 · 1と実数 · 続きを見る »

位取り記数法

位取り記数法(くらいどりきすうほう)、もしくは「N 進法」とは数の表現方法の一種で、予め定められたN 種類の記号(数字)を列べることによって数を表す方法である。(位取りのことを桁ともいう。) 今日の日本において通常使われているのは、 N が十のケースである十進法であるが、コンピューターでは二進法、八進法、十六進法なども用いられる。また歴史的には、十進法が世界的に広まったのはフランス革命の革命政府がメートル法とともに十進法を定めて以来であり、それ以前は国や分野により、様々な N に対する N 進法が用いられていた。 本項ではN が自然数の場合を扱う。それ以外の場合については広義の記数法の記事を参照のこと。また 後述する''p''進数の概念とは(関連があるものの)別概念であるので注意が必要である。.

0.999...と位取り記数法 · 1と位取り記数法 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

0.999...とモノイド · 1とモノイド · 続きを見る »

分数

分数(ぶんすう、fraction)とは 2 つの数の比を用いた数の表現方法のひとつである。.

0.999...と分数 · 1と分数 · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

0.999...と冪乗 · 1と冪乗 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

0.999...と級数 · 1と級数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

0.999...と群 (数学) · 1と群 (数学) · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

0.999...と環 (数学) · 1と環 (数学) · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

0.999...と順序集合 · 1と順序集合 · 続きを見る »

辞書式順序

数学における辞書式順序(じしょしきじゅんじょ、lexicographical order.)とはいくつかの順序集合の直積集合上に順序を定める方法の一つである。順序集合 と が与えられた際の直積集合 上の辞書式順序は として定められる。辞書式順序という名前は、この順序の定め方が辞書における項目の並べ方を一般化したものと見なせることに由来する。つまり、単語(文字の並び) が別の単語 の前に現れるのは が と異なるような最初の について、文字の順番の中で が より前に現れる場合である。このとき2つの単語は同じ長さ(文字数)であるものと仮定されているが、実際の辞書では普通短い単語の方を後ろにどんな文字よりも先の順番にある空白を付け加えることで単語の長さが揃っているものとして考える、という操作が行われる。.

0.999...と辞書式順序 · 1と辞書式順序 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

0.999...と自然数 · 1と自然数 · 続きを見る »

電子掲示板

電子掲示板(でんしけいじばん、BBS、Bulletin Board System)とは、コンピュータネットワークを使用した環境で、記事を書き込んだり、閲覧したり、コメント(レス)を付けられるようにした仕組みのことである。単に「掲示板」と呼んだり、英語表記の略語で "BBS" と呼んだりする。 電子掲示板を利用すると、情報交換や会話・議論などを行うことができる。主に、パソコン通信やインターネットのウェブなどの上で実装される。掲示板を電子的に実現したようなものであることから、「電子掲示板」と名付けられた。.

0.999...と電子掲示板 · 1と電子掲示板 · 続きを見る »

数(かず、すう、number)とは、.

0.999...と数 · 1と数 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

0.999...と整数 · 1と整数 · 続きを見る »

1/2 + 1/4 + 1/8 + 1/16 + ⋯

数学において、級数 + + + + … は、絶対収束する幾何級数の初歩的な例である。 その和は以下のようになる。 また、2進数では のように、0.

0.999...と1/2 + 1/4 + 1/8 + 1/16 + ⋯ · 1と1/2 + 1/4 + 1/8 + 1/16 + ⋯ · 続きを見る »

上記のリストは以下の質問に答えます

0.999...と1の間の比較

1が440を有している0.999...は、142の関係を有しています。 彼らは一般的な17で持っているように、ジャカード指数は2.92%です = 17 / (142 + 440)。

参考文献

この記事では、0.999...と1との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »