ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

XF5 (エンジン)

索引 XF5 (エンジン)

XF5とは、防衛省技術研究本部航空装備研究所が石川島播磨重工業(現・IHI)の協力のもと研究・開発し、石川島播磨重工業により製造されたターボファンエンジンである。XF5-1は先進技術実証機「X-2」へ搭載される。.

29 関係: 失速ニュートンアフターバーナーキロジェットエンジンターボファンエンジン軸流式圧縮機航空自衛隊第1術科学校防衛省F3 (エンジン)F7 (エンジン)IHIP-1 (哨戒機)X-2 (航空機・日本)技術研究本部推力偏向推力重量比浜松基地1995年1997年1998年1999年2000年2001年2002年2003年2007年2008年3月9日

失速

失速(しっそく)あるいはストール(Stall)とは、翼の迎え角を大きくし過ぎた際に、翼の抵抗が急増し、それに伴い翼の表面を流れていた気流が剥離し、揚力をほとんど生みだせなくなる現象である。失速になった後の状態を失速状態といい、抵抗が増えるので速度が急に落ちる。なお、失速は翼の全面積で同時に起こり始めるわけではない(#分類も参照)。.

新しい!!: XF5 (エンジン)と失速 · 続きを見る »

ニュートン

ニュートン(newton、記号: N)は、 国際単位系 (SI)における力の単位。1ニュートンは、1kgの質量を持つ物体に1m/s2の加速度を生じさせる力。名称は古典力学で有名なイギリスの物理学者アイザック・ニュートンにちなむものである。.

新しい!!: XF5 (エンジン)とニュートン · 続きを見る »

アフターバーナー

アフターバーナー (afterburner, A/B) は、ジェットエンジンの排気に対してもう一度燃料を吹きつけて燃焼させ、高推力を得る装置である。.

新しい!!: XF5 (エンジン)とアフターバーナー · 続きを見る »

キロ

(kilo, 記号:k)は国際単位系 (SI) における接頭辞の一つで、以下のように、基礎となる単位の103(=1000)倍の量であることを示す。記号は小文字の「k」である。.

新しい!!: XF5 (エンジン)とキロ · 続きを見る »

ジェットエンジン

ェットエンジン(jet engine)とは、外部から空気を取り入れて噴流(ジェット)を生成し、その反作用を推進に利用する熱機関である。ジェットの生成エネルギーには、取り込んだ空気に含まれる酸素と燃料との化学反応(燃焼)の熱エネルギーが利用される。狭義には、空気吸い込み型の噴流エンジンだけを指す。また、主に航空機(固定翼機、回転翼機)やミサイルの推進機関または動力源として使用される。 ジェット推進は、噴流の反作用により推進力を得る。具体的には、噴流が生み出す運動量変化による反作用(反動)がダクトノズルやプラグノズルに伝わり、推進力が生成される。なお、ジェット推進と同様の噴流が最終的に生成されるものであっても、熱力学的に噴流を生成していないもの、例えばプロペラやファン推力などは、通常はジェット推進には含めない。プロペラやファンは、直接的には回転翼による揚力を推力としている。 ジェット推進を利用している熱機関であっても、ジェット推進を利用しているエンジン全てがジェットエンジンと認識されているわけではなく、外部から取り込んだ空気を利用しないもの(典型的には、ロケットエンジン)は、通俗的にはジェットエンジンに含められていない。ジェットエンジンとロケットエンジンは、用途とメカニズムが異なる。具体的には、ジェットエンジンは、推進のためのジェット噴流を生成するために外部から空気を取り入れる必要があるのに対し、ロケットエンジンは酸化剤を搭載して噴出ガスの反動で進むため、宇宙空間でも使用可能である点が強調される。その代わりにロケットエンジンの燃焼器より前に噴流は全くない。そのため吸気側の噴流も推進力に利用するジェットエンジンと比較して構造も大気中の効率も大幅に異なり、区別して扱われる。 現代の実用ジェットエンジンのほとんどは噴流の持続的な生成にガスタービン原動機を使っている。タービンとはラテン語の「回転するもの」という語源から来た連続回転機のことである。このため、連続的にガスジェットを生成できることが好都合であるが、実際にはタービンを使わないジェットエンジンも多数あり、タービンの有無はジェットエンジンであるか否かの本質とは関係ない。ただしガスタービン原動機を使うことで、回転翼推力とジェット推力の複合出力エンジンとして様々な最適化が可能になり、複数の形式が生まれた。 さらに、ジェットエンジンは熱機関の分類(すなわち「内燃機関」か「外燃機関」か)からも独立した概念である。つまり、ジェットエンジンは基本的には内燃機関であるが、実用化されていないものの、原子力ジェットエンジンのような純粋な外燃機関のジェットエンジンも存在しうる。.

新しい!!: XF5 (エンジン)とジェットエンジン · 続きを見る »

ターボファンエンジン

ターボファンエンジン(Turbofan engine)は、ジェットエンジンの一種。コアとなるターボジェットエンジンにファンを追加したものである。ファンを用いることにより、ターボジェットと異なり、コアエンジン部を迂回したエアフローが設定されている。このエアフローにより、ジェットエンジン推力の増大および効率化が行われる。1960年代より実用化が行われ、現代のジェットエンジンの主流となっているものである。.

新しい!!: XF5 (エンジン)とターボファンエンジン · 続きを見る »

軸流式圧縮機

軸流式圧縮機のアニメーション。静止している部分は静翼 軸流式圧縮機(じくりゅうしきあっしゅくき、Axial compressor)とは、流体機械である圧縮機の一種で、ターボ圧縮機に分類される。回転翼の前後に生じる圧力差を利用し、気体を連続的に圧縮する装置。軸流コンプレッサ(ー)とも呼ばれる。.

新しい!!: XF5 (エンジン)と軸流式圧縮機 · 続きを見る »

航空自衛隊第1術科学校

航空自衛隊第1術科学校(こうくうじえいたいだい1じゅつかがっこう、英称:1st Technical School)は、静岡県浜松市の浜松基地に所在する航空教育集団直轄の教育機関である。.

新しい!!: XF5 (エンジン)と航空自衛隊第1術科学校 · 続きを見る »

防衛省

防衛省市ヶ谷庁舎を望む 防衛省(ぼうえいしょう、Ministry of Defense、略称:MOD)は、日本の中央省庁の一つである。 「日本(条文上の表記は、我が国)の平和と独立を守り、国の安全を保つことを目的とし、これがため、陸上自衛隊、海上自衛隊及び航空自衛隊(自衛隊法第2条第2項・第3項・第4項で規定)を管理し、及び運営し、並びにこれに関する事務を行うこと」と「条約に基づく外国軍隊の駐留及び日本国とアメリカ合衆国との間の相互防衛援助協定の規定に基づくアメリカ合衆国政府の責務の日本国内(条文上の表記は、本邦)における遂行に伴う事務で他の行政機関の所掌に属しないものを適切に行うこと」を任務とする(防衛省設置法第3条第1項・第2項)。 日本では防衛省だが、英語での名称は他国の国防省と同じである。.

新しい!!: XF5 (エンジン)と防衛省 · 続きを見る »

F3 (エンジン)

XF3-30 F3とは、1975年(昭和50年)より防衛庁技術研究本部第3研究所(現・防衛省技術研究本部航空装備研究所)が石川島播磨重工業(現・IHI)の協力のもと研究・開発し、石川島播磨重工業により製造されたターボファンエンジンである。F3-30型が航空自衛隊のT-4中等練習機に搭載されている。.

新しい!!: XF5 (エンジン)とF3 (エンジン) · 続きを見る »

F7 (エンジン)

IHI F7はP-1のためにIHIによって開発されたターボファンエンジンである。開発総額は200億円以上。.

新しい!!: XF5 (エンジン)とF7 (エンジン) · 続きを見る »

IHI

株式会社IHI(アイ・エイチ・アイ、英:IHI Corporation)は、東京都江東区豊洲に本社を置く、重工業を主体とする日本の製造会社。 旧社名は石川島播磨重工業株式会社(いしかわじまはりまじゅうこうぎょう、Ishikawajima-Harima Heavy Industries Co., Ltd,)。2007年7月1日付をもって、従来略称として用いてきたIHIを正式社名に変更した(「H」はHarimaではなくHeavy IndustriesのH)。.

新しい!!: XF5 (エンジン)とIHI · 続きを見る »

P-1 (哨戒機)

P-1は、防衛省技術研究本部と川崎重工業が開発し、川崎重工業が製造、海上自衛隊が保有・運用する固定翼哨戒機である。ターボファンエンジン4発の中型機で、海上自衛隊がP-3Cの後継機として運用する。 2007年(平成19年)9月28日に初飛行した試作機の型式名称はXP-1であったが、2013年(平成25年)3月12日の開発完了の正式発表をもってP-1となった。最初の2機は、2013年3月29日に厚木基地に配備された 防衛省2013年3月12日。.

新しい!!: XF5 (エンジン)とP-1 (哨戒機) · 続きを見る »

X-2 (航空機・日本)

X-2は、日本の防衛装備庁(旧・防衛省技術研究本部)が三菱重工業を主契約企業で開発した先進技術実証用の。「X-2」という型式は、1954年(昭和29年)から1962年(昭和37年)にかけて防衛庁技術研究所で実験に供されたサーブ・サフィール91B改造の高揚力研究機「X1G」に続くものである 時事通信 2016年1月28日。開発にあたっては220社に及ぶ国内企業の協力を得ており、部品の9割超が国産である三菱重工2016年4月22日。 2016年1月28日に型式が発表されるまでは、先進技術実証機 (Advanced Technological Demonstrator-X, ATD-X) が正式な呼称であった。またプロジェクト初期には部内で富士山を意味する 日本経済新聞 2016年2月8日「心神(しんしん)」と呼ばれていたが、型式発表時点で心神という名称は使用されていない。しかし通称としてある程度定着しており、一部メディアでは依然として「心神」と呼ばれている。.

新しい!!: XF5 (エンジン)とX-2 (航空機・日本) · 続きを見る »

技術研究本部

技術研究本部(ぎじゅつけんきゅうほんぶ、英語:Technical Research and Development Institute、略称:TRDI)は、かつて防衛省に置かれていた特別の機関のひとつである。略して技本(ぎほん)とも呼ばれる。.

新しい!!: XF5 (エンジン)と技術研究本部 · 続きを見る »

推力偏向

戦闘機用の推力偏向ノズル。ノズル口の向きを変えることで推力偏向を行う。 推力偏向(すいりょくへんこう)とは、ロケットエンジンやジェットエンジン、スクリュープロペラなど、噴流ないしその反作用によって推力を得るメカニズムにおいて、噴流の向きを変えることで、推力の向きを偏向させることである。 航空機では、固定翼のジェット機で、ジェットエンジンの噴流の向きをノズルで変えることで行われる。これにより推進力の一部で機体を持ち上げたり、補助翼や方向舵などの動翼だけに頼らずに機体の姿勢制御を行うことができ、フライ・バイ・ワイヤによる制御と組み合わせれば運動の幅を増すことが可能になる。そのためS/VTOL性能やドッグファイト時の機動性が求められる軍用機に実装されることが多い。スラスト・ベクタリング (thrust vectoring, TV) またはベクタード・スラスト (vectored thrust, VT) と呼ばれることもある。.

新しい!!: XF5 (エンジン)と推力偏向 · 続きを見る »

推力重量比

推力重量比(すいりょくじゅうりょうひ)とは、瞬間推力の(地球の表面での)重量(=重力)に対する比率である。推重比(すいじゅうひ)ともいう。ロケットエンジンやジェットエンジンや、それらのエンジンで推進する乗り物(ペイロードを含めた打ち上げ機全体やジェット機)などの特性を示す無次元のパラメータである。エンジンや乗り物の設計において、定量比較するための性能指数として使われる。 エンジン単体の推力重量比の方が、打ち上げ機全体での推力重量比よりも大きい。あるエンジンと付属構造物と最小限の推進剤からなる機体が理論的に達成しうる最大の加速度を、そのエンジン単体の推力重量比から求めることができる。 翼を使わない純粋な推力だけでの離昇では、その機体の推力重量比は1以上でなければならない(地上からの打ち上げの場合。月面からでは0.1654以上である)。一般に、推力重量比は機体が発生できる加速度 (G) と等しく、加速度がその場所の重力を上回っていれば、そこから垂直に離昇することができる。 推力重量比はさまざまな要因に影響され、一般的には飛行中にもわずかに変化する。確かな比較を行なうには、管理された状態で推力を測定しなければならない。推力に影響を及ぼす主な要因には、自由流の気温、圧力、密度、組成などがある。エンジンや機体にもよるが、実際の性能は、燃料消費の進行(推力重量比が大きくなる)や浮力やそこでの重力の強さに影響されることが多い。.

新しい!!: XF5 (エンジン)と推力重量比 · 続きを見る »

浜松基地

航空自衛隊浜松基地(はままつきち、JASDF Hamamatsu Airbase)は、静岡県浜松市西区西山町無番地にある航空自衛隊の基地。以前は浜松飛行場を中心に南・北の基地が併設されていたが、現在は統合されて一つの基地になっている。 基地司令は、第1航空団司令が兼務。.

新しい!!: XF5 (エンジン)と浜松基地 · 続きを見る »

1995年

この項目では、国際的な視点に基づいた1995年について記載する。.

新しい!!: XF5 (エンジン)と1995年 · 続きを見る »

1997年

この項目では、国際的な視点に基づいた1997年について記載する。.

新しい!!: XF5 (エンジン)と1997年 · 続きを見る »

1998年

この項目では、国際的な視点に基づいた1998年について記載する。.

新しい!!: XF5 (エンジン)と1998年 · 続きを見る »

1999年

1990年代最後の年であり、1000の位が1になる最後の年でもある。 この項目では、国際的な視点に基づいた1999年について記載する。.

新しい!!: XF5 (エンジン)と1999年 · 続きを見る »

2000年

400年ぶりの世紀末閏年(20世紀および2千年紀最後の年)である100で割り切れるが、400でも割り切れる年であるため、閏年のままとなる(グレゴリオ暦の規定による)。。Y2Kと表記されることもある(“Year 2000 ”の略。“2000”を“2K ”で表す)。また、ミレニアムとも呼ばれる。 この項目では、国際的な視点に基づいた2000年について記載する。.

新しい!!: XF5 (エンジン)と2000年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: XF5 (エンジン)と2001年 · 続きを見る »

2002年

この項目では、国際的な視点に基づいた2002年について記載する。.

新しい!!: XF5 (エンジン)と2002年 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: XF5 (エンジン)と2003年 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: XF5 (エンジン)と2007年 · 続きを見る »

2008年

この項目では、国際的な視点に基づいた2008年について記載する。.

新しい!!: XF5 (エンジン)と2008年 · 続きを見る »

3月9日

3月9日(さんがつここのか)はグレゴリオ暦で年始から68日目(閏年では69日目)にあたり、年末まであと297日ある。.

新しい!!: XF5 (エンジン)と3月9日 · 続きを見る »

ここにリダイレクトされます:

IHI XF5

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »