ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

WZWモデル

索引 WZWモデル

論物理学および数学において、ベス・ズミノ・ウィッテンモデル (Wess–Zumino–Witten (WZW) model) とは、アフィン・カッツ・ムーディ代数が解となるような単純な共形場理論モデルのことを言う。WZWモデルと省略されたり、ベス・ズミノ・ノヴィコフ・ウィッテンモデル(Wess–Zumino–Novikov–Witten model)とも言う。命名は(Julius Wess)、、セルゲイ・ノヴィコフ(Sergei Novikov)とエドワード・ウィッテン(Edward Witten)による 。.

39 関係: 偏微分くりこみ群単位球面単純リー群単連結空間場の量子論大栗博司外積代数中心電荷交換子弦理論作用 (物理学)ユークリッド距離リー代数リーマン球面リーマン面リーマン曲率テンソルリー群リー群の表現フアン・マルダセナアフィンリー代数アインシュタインの縮約記法エドワード・ウィッテンカルタン行列カッツ・ムーディ代数キリング形式コンパクト化コンパクト空間セルゲイ・ノヴィコフ (数学者)共形場理論回転数 (数学)理論物理学無限遠点非線型シグマモデル表現論複素平面捩れテンソル構造定数 (数学)数学

偏微分

数学の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 の変数 に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。.

新しい!!: WZWモデルと偏微分 · 続きを見る »

くりこみ群

くりこみ群(くりこみぐん、renormalization group)とは、くりこみ変換により構成される半群である。くりこみ“群” (renormalization group) と名前はついているが、実際は「群」(group) ではなく「半群」(semi-group) である点は注意すべきことである。.

新しい!!: WZWモデルとくりこみ群 · 続きを見る »

単位球面

様々な単位球面 単位球面(たんいきゅうめん、英: unit sphere)とは、中心点からの距離が1の点の集合である。なお、ここでの距離とは一般的な距離の概念である。一方、単位球(たんいきゅう、英: unit ball)は、中心点からの距離が1以下の点の集合(閉単位球 (closed unit ball))、あるいは1未満の点の集合(開単位球 (open unit ball))である。通常、特に断らない限り、対象とする空間の原点を中心点とする。したがって英語で何の前置きもなく "the" をつけて書かれている場合は、原点を中心点とする単位球面や単位球を指す。 単純に言い換えれば、単位球面は半径が1の球面であり、単位球は半径が1の球である。任意の球面は平行移動と拡大・縮小によって単位球面に変換でき、この点が重要である。したがって、球面の研究は一般に単位球面を研究することに還元できる。.

新しい!!: WZWモデルと単位球面 · 続きを見る »

単純リー群

群論において、単純リー群 (simple Lie group) は連結非可換リー群 G であって非自明な連結正規部分群を持たないものである。 単純リー環 (simple Lie algebra) は非可換リー環であってイデアルが 0 と自身しかないものである。単純リー環の直和は半単純リー環と呼ばれる。 単純リー群の同値な定義がから従う:連結リー群はリー環が単純であれば単純である。重要な技術的点は、単純リー群は離散的な正規部分群を含むかもしれず、したがって単純リー群であることは抽象群として単純であることとは異なるということである。 単純リー群は多くのを含む。古典型リー群は球面幾何学、射影幾何学、フェリックス・クラインのエルランゲンプログラムの意味で関連する幾何学の群論的支柱を提供する。どんなよく知られた幾何学にも対応しない可能性もいくつか存在することが単純リー群のの過程で現れた。これらの例外群 (exceptional group) により数学の他の分野や当時の理論物理学の多くの特別な例や configuration が説明される。 単純リー群の概念は公理的観点からは十分であるが、の理論のようなリー理論の応用において、幾分一般的な概念である半単純および簡約リー群がもっと有用であることが証明されている。とくに、すべての連結は簡約であり、一般の簡約群の表現の研究は表現論の主要な分野である。.

新しい!!: WZWモデルと単純リー群 · 続きを見る »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: WZWモデルと単連結空間 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: WZWモデルと場の量子論 · 続きを見る »

大栗博司

大栗 博司(おおぐり ひろし、1962年- )は、日本の物理学者。理学博士(東京大学、1989年)。専門は素粒子論。 カリフォルニア工科大学フレッド・カブリ冠教授、所長。東京大学数物連携宇宙研究機構の主任研究員、アスペン物理学センターの所長でもある。 大栗は、場の量子論や超弦理論の深い数学的構造を発見し、これらの理論を素粒子物理学や宇宙物理学・宇宙論の基礎的問題に応用するための新しい理論的手法を開発している。特にトポロジカルな弦理論を発展させ、これによってブラックホールの量子力学的性質を解明した。また、2次元の共形場の理論、カラビ-ヤウ多様体上のDブレーン、AdS/CFT対応、超対称性を持つ場の量子論の性質と超弦理論との関係などについても基礎的な貢献をしている。 米国の大学で教鞭をとっているが、日本からこれまでに10名程度の大学院生やポストドクトラル・フェローを受け入れ指導をし、その後が大学教官や研究者として活動している。.

新しい!!: WZWモデルと大栗博司 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: WZWモデルと外積代数 · 続きを見る »

中心電荷

理論物理学では、中心電荷(、あるいはセントラルチャージ)は、他のすべての対称作用素と可換である作用素 Z のことである。付随している形容詞「セントラル」は、対称群の中心を意味する。中心とは、元の群のほかのすべての元と可換である元からなる部分群のことを言い、リー代数の中で考えられることが多い。2次元の共形場理論のような場合には、中心電荷は、対称性の生成子ではない作用素を含む他の作用素のすべてと可換である。さらに、ネーターの定理により、中心電荷は対称群の中心拡大の中心と対応する電荷である。 超対称性理論では、この定義は(supergroups)と(Lie superalgebra)を持つ理論へ拡張することができる。中心電荷はすべての他の超対称性の生成子と可換であるようなすべての作用素である。(extended supersymmetry)を持つ理論は、典型的にこの種類の作用素(演算子)を多く持っている。弦理論では、第一量子化の中で、これらの作用素は、様々な弦や(brane)の巻き数((topological quantum number))としての解釈も持っている。 共形場理論では、中心電荷はストレス・エネルギーテンソルの 2つの成分の交換関係に現れる(すべての他の作用素(演算子)と可換な)の項である。 Category:場の量子論 Category:物理学.

新しい!!: WZWモデルと中心電荷 · 続きを見る »

交換子

数学における交換子(こうかんし、commutator)は、二項演算がどの程度可換性からかけ離れているかを測る指標の役割を果たすものである。考えている代数構造により定義が異なる。物理学、特に量子力学における交換子の役割については、交換関係 (量子力学)の項を参照。.

新しい!!: WZWモデルと交換子 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: WZWモデルと弦理論 · 続きを見る »

作用 (物理学)

物理学における作用(さよう、action)は、の動力学的な性質を示すもので、数学的には経路トラジェクトリとか軌道とも呼ばれる。を引数にとる実数値の汎関数として表現される。一般には、異なる経路に対する作用は異なる値を持つ。古典力学においては、作用の停留点における経路が実現される。この法則を最小作用の原理と呼ぶ。 作用は、エネルギーと時間の積の次元を持つ。従って、国際単位系 (SI) では、作用の単位はジュール秒 (J⋅s) となる。作用の次元を持つ物理定数としてプランク定数がある。そのため、プランク定数は作用の物理的に普遍な単位としてしばしば用いられる。なお、作用と同じ次元の物理量として角運動量がある。 物理学において「作用」という言葉は様々な意味で用いられる。たとえば作用・反作用の法則や近接作用論・遠隔作用論の中で論じられる「作用」とは物体に及ぼされる力を指す。本項では力の意味での作用ではなく、解析力学におけるラグランジアンの積分としての作用についてを述べる。.

新しい!!: WZWモデルと作用 (物理学) · 続きを見る »

ユークリッド距離

数学におけるユークリッド距離(ユークリッドきょり、Euclidean distance)またはユークリッド計量(ユークリッドけいりょう、Euclidean metric; ユークリッド距離函数)とは、人が定規で測るような二点間の「通常の」距離のことであり、ピタゴラスの公式によって与えられる。この公式を距離函数として用いればユークリッド空間は距離空間となる。ユークリッド距離に付随するノルムはユークリッドノルムと呼ばれる。古い書籍などはピタゴラス計量(Pythagorean metric)と呼んでいることがある。.

新しい!!: WZWモデルとユークリッド距離 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: WZWモデルとリー代数 · 続きを見る »

リーマン球面

リーマン球面は、複素平面で包んだ球面(ある形式の立体射影による ― 詳細は下記参照)として視覚化できる。 数学においてリーマン球面(リーマンきゅうめん、Riemann sphere)は、無限遠点を一点追加して複素平面を拡張する一手法であり、ここに無限遠点 は、少なくともある意味で整合的かつ有用である。 19 世紀の数学者ベルンハルト・リーマンから名付けられた。 これはまた、以下の通りにも呼ばれる。.

新しい!!: WZWモデルとリーマン球面 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: WZWモデルとリーマン面 · 続きを見る »

リーマン曲率テンソル

リーマン幾何学においてリーマン曲率テンソル(リーマンきょくりつテンソル、Riemann curvature tensor)あるいはリーマン-クリストッフェルのテンソル(Riemann–Christoffel tensor)とは、リーマン多様体の曲率を表す4階のテンソルを言う。名称は、ベルンハルト・リーマンおよびエルウィン・ブルーノ・クリストッフェルに因む。 リーマン-クリストッフェルのテンソル(リーマン曲率テンソル)は重力の現代的理論である一般相対性理論における数学的な道具の中心となるものである。.

新しい!!: WZWモデルとリーマン曲率テンソル · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: WZWモデルとリー群 · 続きを見る »

リー群の表現

数学や理論物理学では、リー群の表現の考え方は、連続対称性の研究で重要な役割を果たす。 そのような表現は、対応する「無限小」リー代数の表現研究で使用する基本的なツールであることが良く知られている。物理学の文献では、リー群の表現とリー代数の表現との間の違いを強調しないこともある。 Chapter 2.

新しい!!: WZWモデルとリー群の表現 · 続きを見る »

フアン・マルダセナ

フアン・マルティン・マルダセナ(Juan Martin MALDACENA、1968年9月10日 - )は、アルゼンチンのブエノスアイレス出身の理論物理学者である。専門は素粒子理論。アメリカ合衆国のプリンストンにある高等研究所自然科学部門の教授を務めている。.

新しい!!: WZWモデルとフアン・マルダセナ · 続きを見る »

アフィンリー代数

数学において、アフィン・リー環(affine Lie algebra)は、有限次元単純リー環から自然な方法で構成される無限次元のリー環である。アフィン・リー環は一般カルタン行列が半正定値で余階数が 1 のカッツ・ムーディ・リー環である。純粋数学的な視点からは、アフィン・リー環は面白い理由は、その表現論が、有限次元半単純リー環の表現論のように、一般のカッツ・ムーディ・リー環の表現論よりもはるかによく理解されているからである。ヴィクトル・カッツによって発見されたように、アフィン・リー環の表現に対する指標公式から、組合せ論的な恒等式であるマクドナルド恒等式が導かれる。 アフィンリー環はそのつくり方により弦理論や共形場理論において重要な役割を果たす。つくり方は、単純リー環 \mathfrak からはじめて、円(閉弦と解釈される)上の \mathfrak 値関数からなる点ごとの交換子によるループ代数 L\mathfrak を考える。アフィンリー環 \hat はループ代数に1次元付け加えて交換子を非自明な方法で修正することによって得られる。これは物理学者が量子アノマリー(この場合WZWモデルのアノマリー)と、数学者が中心拡大と呼ぶものである。より一般に、 が単純Lie環 \mathfrak のディンキン図形の自己同型に伴う自己同型であるとき、twisted loop algebra L_\sigma\mathfrak は実数直線上の \mathfrak 値関数 で twisted periodicity condition を満たすものからなる。その中心拡大がまさに twisted アフィンリー環である。弦理論の視点はアフィンリー環の多くの深い性質、例えばそれらの表現のはモジュラー群の下でそれらの中で変換すること、を理解する助けとなる。.

新しい!!: WZWモデルとアフィンリー代数 · 続きを見る »

アインシュタインの縮約記法

アインシュタインの縮約記法(アインシュタインのしゅくやくきほう、Einstein summation convention)またはアインシュタインの記法(アインシュタインのきほう、Einstein notation)は、アインシュタインが 1916 年に用いた添字 の和の記法である 。アインシュタインの規約(アインシュタインのきやく、Einstein convention)とも呼ばれる。 同じ項で添字が重なる場合は、その添字について和を取る、というルールである。この重なる指標を擬標(またはダミーの添字、)、重ならない指標を自由標(またはフリーの添字、)と呼ぶ。 このルールは一般相対性理論、量子力学、連続体力学、有限要素法などで重宝する。 アインシュタインはこの記法を自分の「数学における最大の発見」と(冗談めかして)言ったという。.

新しい!!: WZWモデルとアインシュタインの縮約記法 · 続きを見る »

エドワード・ウィッテン

ドワード・ウィッテン(Edward Witten, 1951年8月26日 - )は超弦理論においてM理論を提唱した理論物理学者。現在はプリンストン高等研究所教授。 メリーランド州ボルチモア生まれ。父親は一般相対性理論の研究者で元シンシナティ大学教授のルイス・ウィッテン。当初はジャーナリストを志望し、ブランダイス大学時代は歴史学や言語学を専攻。米国雑誌『The Nation』や『THE NEW REPUBLIC』に寄稿する他、1972年の大統領選で大敗したジョージ・マクガヴァンの選挙運動に携わった。 ウィスコンシン大学マディソン校大学院で経済学を専攻するが中退し、1973年にプリンストン大学大学院で応用数学を専攻。後に物理学に移り、デビッド・グロスの下で1976年に博士号を取得した。 その後ハーヴァード大学のフェローなどを経て、1980年から1987年までプリンストン大学物理学科の教授を務めた。1995年に南カリフォルニア大学で開かれたスーパーストリング理論国際会議で、仮説M理論を発表し学会に衝撃を与える。1990年、数学に関する最高権威を有するフィールズ賞を受賞。 ネーサン・サイバーグとは友人で共同研究者。米制作ドキュメンタリー「美しき大宇宙」(原題:The Elegant Universe)に出演している。.

新しい!!: WZWモデルとエドワード・ウィッテン · 続きを見る »

カルタン行列

ルタン行列(Cartan matrix)は 3つの意味を持っている。3つともすべてはフランスの数学者エリ・カルタン(Élie Cartan)の名に因んでいる。実際、リー代数の脈絡でのカルタン行列は、最初に(Wilhelm Killing)により研究され、一方、キリング形式はカルタンによって研究された。.

新しい!!: WZWモデルとカルタン行列 · 続きを見る »

カッツ・ムーディ代数

数学において、カッツ・ムーディ(・リー)代数(Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と は が類似の方法で導出できることを証明した。.

新しい!!: WZWモデルとカッツ・ムーディ代数 · 続きを見る »

キリング形式

数学において、 (Wilhelm Killing) の名に因むキリング形式 (Killing form) とは、リー群とリー環の理論において基本的な役割を果たす対称双線型形式である。.

新しい!!: WZWモデルとキリング形式 · 続きを見る »

コンパクト化

ンパクト化(compactification)は数学の一分野である位相空間論(general topology)の概念である。.

新しい!!: WZWモデルとコンパクト化 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: WZWモデルとコンパクト空間 · 続きを見る »

セルゲイ・ノヴィコフ (数学者)

ルゲイ・ペトロヴィチ・ノヴィコフ(, 1938年3月20日 - )は、ロシアの数学者。 モスクワ国立大学教授、メリーランド大学教授、ランダウ理論物理学研究所研究員、ステクロフ数学研究所研究員。 専門は幾何学、トポロジー、ホモトピー論、多様体の分類論、コボルディズム、葉層構造論、可積分系、理論物理学。 両親とも数学者という家庭に生まれる。父はピョートル・ノヴィコフ。 同年代のウラジーミル・アーノルド、ユーリ・マニン等とともにソビエト・ロシア数学黄金期を築いた数学者。.

新しい!!: WZWモデルとセルゲイ・ノヴィコフ (数学者) · 続きを見る »

共形場理論

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。 共形変換に対する不変性はWard-Takahashi恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。 共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。.

新しい!!: WZWモデルと共形場理論 · 続きを見る »

回転数 (数学)

数学において、与えられた点の周りの平面の閉曲線の回転数 (winding number) は曲線がその点の周りを反時計回りに周った総回数を表す整数である。回転数はに依存し、曲線が点の周りを時計回りに周れば負の数である。 回転数は代数トポロジーにおいて研究の基本的な対象であり、ベクトル解析、複素解析、幾何学的トポロジー、微分幾何学、弦理論を含む物理、において重要な役割を果たす。.

新しい!!: WZWモデルと回転数 (数学) · 続きを見る »

理論物理学

論物理学(りろんぶつりがく、)は、物理学において、理論的な模型や理論的仮定(主に数学的な仮定)を基に理論を構築し、既知の実験事実(観測や観察の結果)や、自然現象などを説明し、かつ未知の現象に対しても予想する物理理論を扱う分野のこと。実験物理学と対比して使われる言葉。 手段として、伝統的な紙と鉛筆によるもの以外に、現在ではコンピュータによる数値的なシミュレーション、数値解析、物理シミュレーションなどにおいて使用される計算機も重要なものの一つとなっている。このシミュレーションなどによる計算物理学分野も、通常は理論物理学に含める。ただ計算物理学を、理論、実験以外の第三の分野と捉える考え方もある。 物理学が理論物理学と実験物理学に分化したのは、19世紀後半から20世紀初頭にかけての物理学の急速な発展に原因がある。それまでの物理学の知識の集積は、一人の物理学者が実験と理論の両方を十分カバーできる程度のものであった。しかし急速な発展の結果、物理学の領域はあまりにも巨大化・複雑化しすぎて、全体を把握することが困難となった。理論的な考察を行なうために習得しなければならない数学的手法や既存の物理理論も膨大な量になって、習得に何年もかかるようになった。このため、それぞれ担当分野に分かれて研究を進める他なくなったのである。ロシア(旧ソ連)のレフ・ダヴィドヴィッチ・ランダウが自国の物理学者志望の学生に課した「理論ミニマム」教程(最低限の知識)にもそれが現れている。.

新しい!!: WZWモデルと理論物理学 · 続きを見る »

無限遠点

無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。 例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと) ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。.

新しい!!: WZWモデルと無限遠点 · 続きを見る »

非線型シグマモデル

場の量子論において、非線型シグマモデル (nonlinear σ model) は、対象多様体と呼ばれる非線型多様体 T 上に値をとるスカラー場 である。非線型シグマモデルは により導入され、彼らのモデルの中の σ と呼ばれるスピンを持たないメソンに対応する場に因んで命名された。.

新しい!!: WZWモデルと非線型シグマモデル · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: WZWモデルと表現論 · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: WZWモデルと複素平面 · 続きを見る »

捩れテンソル

微分幾何学では、捩れ(torsion)とは、曲線に関する(moving frame)のツイストや捩れ方を特徴づける方法のことをいう。曲線の捩れ(torsion of a curve)は、たとえばフレネ・セレの公式に現れるように、曲線の捩れ具合を、曲線の発展として接ベクトルについての量(むしろ、フレネ・セレの標構の接ベクトルについての回転)として測る。曲面の幾何学では、測地線の捩れ(geodesic torsion)は、どのように曲面がその上の曲線について捩れているかを記述する。曲率の考えは、どのくらい動標構が捩れることなく曲線に沿って「回っている」かを測る。 さらに一般的には、アフィン接続(つまり、接バンドル上の(connection)のこと)をもつ微分可能多様体上では、捩れ形式や曲率形式は、接続の基本不変量である。この脈絡では、曲線に沿って(parallel transport)すると、接空間がどのくらい捩れるかを本質的に特徴つける量が捩れである。一方、曲率はどれくらい接空間が曲線にそって回るかを記述するようである。捩れは具体的にテンソル、多様体上の(vector-valued) 2-形式として表わされる。∇ を微分可能多様体上のアフィン接続形式とすると、捩れテンソルは、ベクトル場 X と Y により、 と定義される。ここに は(Lie bracket of vector fields)である。 捩れは、測地線の幾何学の研究にとって特に有用である。パラメータ化された測地線の系が与えられると、捩れの違いによる差異はあるが、それらの測地線を持つアフィン接続のクラスを特定することができる。((Finsler geometry)のように、)計量を持たない状況下でも可能な、レヴィ・チヴィタ接続を一般化となる捩れを併せ持つような接続が一意に存在する。また、捩れを併せ持つことは、(G-structure)や(Cartan's equivalence method)の研究で、重要な役割を果たす。 捩れは、また、捩れ形式に伴う(projective connection)を通してパラメータ付けを持たない測地線の族の研究にも有用である。相対論では、捩れ形式の考えは(Einstein–Cartan theory)の形で、理論の中に実現されている。 T(X,Y).

新しい!!: WZWモデルと捩れテンソル · 続きを見る »

構造定数 (数学)

分配多元環の構造定数(こうぞうていすう、structure constant, structure coeficient)とは、与えられた自由加群に対して、それを分配多元環とするための積構造を決定する定数のことである。.

新しい!!: WZWモデルと構造定数 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: WZWモデルと数学 · 続きを見る »

ここにリダイレクトされます:

WZW

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »