ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

SUMOタンパク質

索引 SUMOタンパク質

SUMOタンパク質(SUMO protein)とは、細胞内の他のタンパク質に一時的に共有結合してその機能を助ける小さなタンパク質で、SUMOとはSmall Ubiquitin-related(like) Modifierという言葉の略である。タンパク質のSUMO化は翻訳後修飾の1つで、細胞核-細胞質の輸送、転写制御、アポトーシス、タンパク質の安定化、ストレス応答、細胞周期の進行など様々な細胞内のプロセスに関係する。 SUMOタンパク質はユビキチンとよく似ていて、SUMO化に関与する酵素も、ユビキチン化の一連の酵素のアナログである。ただしユビキチンがタンパク質分解のタグとなるのに対して、SUMOにはそのような機能はない。SUMOはC末端の4残基が切り落とされることによって完成する。 SUMOタンパク質には別名を持つものが多い。例えば酵母のSUMO1ホモログはSMT3と呼ばれる。またコードする遺伝子にはいくつかの偽遺伝子が存在するという報告もある。 iMolとPDBファイル1A5R、NMRを元に作られたヒトSUMO1タンパク質の構造図。タンパク質の構造はリボンで表現し、二次構造を着色している。N末端は青、C末端は赤である。 同じく、原子を球で表現したタンパク質の構造図。.

18 関係: 偽遺伝子中心体ユビキチンリシンアポトーシスカエノラブディティス・エレガンスストレス (生体)タンパク質共有結合細胞細胞周期細胞質細胞核翻訳後修飾遺伝子転写 (生物学)転写因子酵母

偽遺伝子

偽遺伝子(ぎいでんし、英:Pseudogene)は、DNAの配列のうち、かつては遺伝子産物(特にタンパク質)をコードしていたと思われるが、現在はその機能を失っているものをいう。偽遺伝子はもとの機能を有する配列に突然変異が生じた結果生まれたと考えられている。具体的にはある位置でストップコドンが生じてタンパク質のペプチド鎖が短くなってしまいタンパク質として機能を果たせなくなる場合、あるいは正常な転写に必要な調節配列が機能を失う場合などがある。元の正常な遺伝子が別に残っている場合が多いが、単独でそのまま偽遺伝子になったものもある。 偽遺伝子は構造から3つのタイプに分けることができる。.

新しい!!: SUMOタンパク質と偽遺伝子 · 続きを見る »

中心体

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) '''中心体''' 中心体(ちゅうしんたい、centrosome or centriole)とは、動物細胞における細胞小器官の一つ。微小管形成中心(MTOC; microtubule organizing center)とも呼ばれる。なお、植物細胞においては中心体の存在が認められず、微小管形成中心は細胞内に分散する多数の極性中心として認められる。 ごく短い微小管から構成される。長さ0.4μm、9対の三連微小管が環状に配置したもの(中心小体あるいは中心子(centriole)と呼ぶ)が二個一組、相互に直角対向しL字形に配置している。 また、中心小体の周辺には明瞭ではないが、光学的には明るくみえる中心体マトリックスと呼ばれる球状の構造がみとめられる。中心体マトリックスには、γ-チューブリン環を含む中心体に特異的なタンパク質が含まれており、中心体の微小管形成中心としての機能を司る構造としては、中心小体より重要な部分と考えられている。 通常、中心体は核の近辺に配置されている。中心小体は細胞分裂に先立ってS期頃に複製され、計4つになる。細胞が分裂期に入ると、それぞれ2つの中心小体からなる中心体が細胞の両極に移動する。この際、各々の中心小体あるいは中心体は、細胞分裂の際に認められる星状体(aster)および紡錘体の極となっている。 微小管は、その-端を中心体に置き、重合の場である+端を細胞内の様々な領域に伸ばすことが多い。 微小管の重合・伸長を抑制する脱重合剤を用いて細胞を処理し、一旦微小管を消失させた後、この脱重合剤を除去すると、新しい微小管は中心体から伸長して星状体を形成した後、さらに伸長を続け、細胞全域と広がっていく。このことから、中心体が微小管形成中心として働いていることが分かる。.

新しい!!: SUMOタンパク質と中心体 · 続きを見る »

ユビキチン

ユビキチンの構造のリボン図 ユビキチン (ubiquitin) は76個のアミノ酸からなるタンパク質で、他のタンパク質の修飾に用いられ、タンパク質分解、DNA修復、翻訳調節、シグナル伝達などさまざまな生命現象に関わる。至る所にある (ubiquitous) ことからこの名前が付いた。進化的な保存性が高く、すべての真核生物でほとんど同じアミノ酸配列をもっているが、古細菌は全種がプロテアソームを持つもののユビキチンを持つのはごく一部の系統に限られる("Caldiarchaeum"、"Lokiarchaeum"等)。真正細菌には存在しない。.

新しい!!: SUMOタンパク質とユビキチン · 続きを見る »

リシン

リシン()はα-アミノ酸のひとつで側鎖に 4-アミノブチル基を持つ。リジンと表記あるいは音読する場合もある。ソディウム。 しかし、分野によってはソディウムを使うように、分野ごとに何が標準的な発音や読みかは異なります。 正しい読みという概念は妄想なのでこの部分をコメントアウトします。 (ただし、リジンはドイツ語読みであるため、現在ではリシンと表記および音読するのが正しい) --> タンパク質構成アミノ酸で、必須アミノ酸である。略号は Lys あるいは K である。側鎖にアミノ基を持つことから、塩基性アミノ酸に分類される。リシンは、クエン酸回路に取り込まれてエネルギーを生み出すケト原性アミノ酸である。.

新しい!!: SUMOタンパク質とリシン · 続きを見る »

アポトーシス

アポトーシス、アポプトーシス (apoptosis) とは、多細胞生物の体を構成する細胞の死に方の一種で、個体をより良い状態に保つために積極的に引き起こされる、管理・調節された細胞の自殺すなわちプログラムされた細胞死(狭義にはその中の、カスパーゼに依存する型)のこと。ネクローシス(necrosis)の対義語として使われる事が多い。 Apoptosis の語源はギリシャ語の“”, apoptosis アポプトーシス:「apo-(離れて)」と「ptosis(下降)」に由来し、「(枯れ葉などが木から)落ちる」という意味である。英語ではと発音されるが、この語が最初に提唱された論文では2番目のpを黙字としている。.

新しい!!: SUMOタンパク質とアポトーシス · 続きを見る »

カエノラブディティス・エレガンス

ノラブディティス・エレガンス は、線形動物門双腺綱桿線虫亜綱カンセンチュウ目カンセンチュウ科に属する線虫の1種。実験材料として非常に優れた性質をもつことから、モデル生物として広く利用されている。多細胞生物として最初に全ゲノム配列が解読された生物でもある。通常は (シー・エレガンス)と呼ばれるため、本稿も以下はこの名称で述べる。.

新しい!!: SUMOタンパク質とカエノラブディティス・エレガンス · 続きを見る »

ストレス (生体)

トレス(英: stress)とは、生活上のプレッシャーおよび、それを感じたときの感覚である。オックスフォード英語辞典では、苦痛や苦悩を意味する distress が短くなった単語とされる。ストレスの概念は一般に、1930年代のハンス・セリエの研究に起源を持つとされる。この文脈では、精神的なものだけでなく、寒さ熱さなど生体的なストレスも含む。ストレスが健康に影響を与える研究が行われてきた。様々なストレス管理の方法がある。 しかし、近年の2012年の研究では、ストレスが健康に影響を与えると認識している群の死亡率が43%高まることが見いだされている。逆に認識していない群はそうではない。そのようなストレスに対する認識の影響の研究が進展している。.

新しい!!: SUMOタンパク質とストレス (生体) · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: SUMOタンパク質とタンパク質 · 続きを見る »

共有結合

H2(右)を形成している共有結合。2つの水素原子が2つの電子を共有している。 共有結合(きょうゆうけつごう、covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。 この結合は非金属元素間で生じる場合が多いが、金属錯体中の配位結合の場合など例外もある。 共有結合はσ結合性、π結合性、金属-金属結合性、アゴスティック相互作用、曲がった結合、三中心二電子結合を含む多くの種類の相互作用を含む。英語のcovalent bondという用語は1939年に遡る。接頭辞のco- は「共同」「共通」などを意味する。ゆえに、「co-valent bond」は本質的に、原子価結合法において議論されているような「原子価」(valence)を原子が共有していることを意味する。 分子中で、水素原子は共有結合を介して2つの電子を共有している。共有結合性は似た電気陰性度の原子間で最大となる。ゆえに、共有結合は必ずしも同種元素の原子の間だけに生じるわけではなく、電気陰性度が同程度であればよい。3つ以上の原子にわたる電子の共有を伴う共有結合は非局在化している、と言われる。.

新しい!!: SUMOタンパク質と共有結合 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: SUMOタンパク質と細胞 · 続きを見る »

細胞周期

細胞周期(さいぼうしゅうき; cell cycle)は、ひとつの細胞が二つの娘細胞を生み出す過程で起こる一連の事象、およびその周期のことをいう。細胞周期の代表的な事象として、ゲノムDNAの複製と分配、それに引き続く細胞質分裂がある。.

新しい!!: SUMOタンパク質と細胞周期 · 続きを見る »

細胞質

滑面小胞体 (9)ミトコンドリア (10)液胞 (11)'''細胞質''' (12)リソソーム (13)中心小体 細胞質(さいぼうしつ、cytoplasm)は、細胞の細胞膜で囲まれた部分である原形質のうち、細胞核以外の領域のことを指す。細胞質は細胞質基質の他、特に真核生物の細胞では様々な細胞小器官を含む。細胞小器官の多くは生体膜によって他の部分と隔てられている。細胞質は生体内の様々な代謝や、細胞分裂などの細胞活動のほとんどが起こる場所である。細胞質基質を意図して誤用される場合も多い。 細胞質のうち、細胞小器官以外の部分を細胞質基質または細胞質ゲルという。細胞質基質は複雑な混合物であり、細胞骨格、溶解した分子、水分などからなり、細胞の体積の大きな部分を占めている。細胞質基質はゲルであり、繊維のネットワークが溶液中に散らばっている。この細孔状のネットワークと、タンパク質などの高分子の濃度の高さのため、細胞質基質の中では分子クラウディングと呼ばれる現象が起こり、理想溶液にはならない。このクラウディングの効果はまた細胞質基質内部の反応も変化させる。.

新しい!!: SUMOタンパク質と細胞質 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: SUMOタンパク質と細胞核 · 続きを見る »

翻訳後修飾

翻訳後修飾(ほんやくごしゅうしょく、Post-translational modification、PTM)は、翻訳後のタンパク質の化学的な修飾である。これは多くのタンパク質の生合成の後方のステップの1つである。 翻訳後、アミノ酸は、酢酸、リン酸、様々な脂質、炭水化物のような他の生化学官能基と結合し、化学的特性の変換(例えばシトルリン)、またはジスルフィド結合の形成のような構造変換などを受け、タンパク質の反応の幅を広げる。 また、酵素がタンパク質のN末端からアミノ酸を輸送するか、中央からペプチド結合を切断することもある。例えば、ペプチドホルモンであるインスリンはジスルフィド結合が形成された後に2つに切断され、C-ペプチド(右図の桃色のポリペプチド鎖部分)は結合から切り離される。(最終的にジスルフィド結合で2つのポリペプチド鎖が結合したタンパク質が生じる。) この他の修飾にリン酸化がある。この修飾はタンパク質酵素の作用の活発化と非活発化の調節機構においてよく起こる。.

新しい!!: SUMOタンパク質と翻訳後修飾 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: SUMOタンパク質と遺伝子 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

新しい!!: SUMOタンパク質と転写 (生物学) · 続きを見る »

転写因子

転写因子(てんしゃいんし)はDNAに特異的に結合するタンパク質の一群である。DNA上のプロモーターやエンハンサーといった転写を制御する領域に結合し、DNAの遺伝情報をRNAに転写する過程を促進、あるいは逆に抑制する。転写因子はこの機能を単独で、または他のタンパク質と複合体を形成することによって実行する。ヒトのゲノム上には、転写因子をコードする遺伝子がおよそ1,800前後存在するとの推定がなされている。.

新しい!!: SUMOタンパク質と転写因子 · 続きを見る »

酵母

酵母(こうぼ)またはイースト(英語:yeast)は、広義には生活環の一定期間において栄養体が単細胞性を示す真菌類の総称である。 狭義には、食品などに用いられて馴染みのある出芽酵母の一種 Saccharomyces cerevisiae を指し、一般にはこちらの意味で使われ、酵母菌と俗称されている。 広義の「酵母」は正式な分類群の名ではなく、いわば生活型を示す名称であり、系統的に異なる種を含んでいる。 狭義の酵母は、発酵に用いられるなど工業的に重要であり、遺伝子工学の主要な研究対象の1つでもある。明治時代にビール製法が輸入されたときに、yeast の訳として発酵の源を意味する字が当てられたのが語源であるが、微生物学の発展とともにその意味するところが拡大していった。.

新しい!!: SUMOタンパク質と酵母 · 続きを見る »

ここにリダイレクトされます:

SUMO化

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »