ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

RNAi

索引 RNAi

RNAi RNAi(RNA interferenceの略、日本語でRNA干渉ともいう)は、二本鎖RNAと相補的な塩基配列を持つmRNAが分解される現象。RNAi法は、この現象を利用して人工的に二本鎖RNAを導入することにより、任意の遺伝子の発現を抑制する手法 。アンチセンスRNA法やコサプレッションもRNAiの一形態と考えられる。 通常、遺伝子の機能阻害は染色体上の遺伝子を破壊することで行われてきた。しかし、RNAi法はこのような煩雑な操作は必要なく、塩基配列さえ知ることができれば合成したRNAを導入するなどの簡便な手法で遺伝子の機能を調べることができる。ゲノムプロジェクトによって全塩基配列を知ることのできる生物種では、逆遺伝学的解析の速度を上げる大きな要因の一つともなった。一方、完全な機能喪失とはならないこと、非特異的な影響を考慮する必要があるなどの問題もある。 1998年にアンドリュー・ファイアー等は線虫の一種であるモデル生物のCaenorhabditis elegans (C. elegans)を用いて、センス鎖とアンチセンス鎖の混合RNAが、それぞれの単独RNAより大きな阻害効果があることを示した。この効果は、標的mRNAとのモル比などから単純にアンチセンス鎖がmRNAに1:1で張り付いて阻害するのではなく、何らかの増幅過程を含むか、酵素的活性をもつことが予想された。その後、RNase IIIの一種であるDicerによって、長い二本鎖RNAが、siRNA(small interfering RNA)と呼ばれる21-23 ntの短い3'突出型二本鎖RNAに切断されること、siRNAといくつかの蛋白質から成るRNA蛋白質複合体であるRISC複合体が再利用されながら相補的な配列を持つmRNAを分解することがわかってきた。 2001年には哺乳類の細胞でsiRNAを導入することで、それまで問題となってきた二本鎖RNA依存性プロテインキナーゼの反応を回避することができた 。これにより、遺伝子治療応用への期待が高まっている。RNAi機構は酵母からヒトに至るまで多くの生物種で保存されている。その生物学的な意義としてはウイルスなどに対する防御機構として進化してきたという仮説が提唱されている。さらに、染色体再構成などにも関わる可能性が示され、またstRNAなど作用機構の一部を共有するmiRNAが発生過程の遺伝子発現制御を行っていることなどが明らかとなり、小分子RNAが果たす機能に注目が集まるきっかけの一つとなった。また、酵母を用いた研究では、染色体のセントロメアやテロメアのヘテロクロマチン形成にRNAiの機構が関与していることが報告されている。 2006年、アンドリュー・ファイアーとクレイグ・メローはRNAi発見の功績よりノーベル生理学・医学賞を受賞した。.

39 関係: 塩基配列伝令RNAナミテントウノーベル生理学・医学賞モルモデル生物リボ核酸ヘテロクロマチンプロテインキナーゼヒトテロメアアンドリュー・ファイアーイネウイルスカエノラブディティス・エレガンスクレイグ・メローゲノムプロジェクトコオロギコクヌストモドキシロアリシロイヌナズナセントロメアタバコ哺乳類細胞線形動物生物遺伝子胚発生酵素酵母進化逆遺伝学MiRNASiRNA染色体1998年2001年2006年

塩基配列

生物学における塩基配列(えんきはいれつ)とは、DNA、RNAなどの核酸において、それを構成しているヌクレオチドの結合順を、ヌクレオチドの一部をなす有機塩基類の種類に注目して記述する方法、あるいは記述したもののこと。 核酸の塩基配列のことを、単にシークエンスと呼ぶことも多い。ある核酸の塩基配列を調べて明らかにする操作・作業のことを、塩基配列決定、あるいはシークエンシングと呼ぶ。.

新しい!!: RNAiと塩基配列 · 続きを見る »

伝令RNA

伝令RNA(でんれいRNA、メッセンジャーRNA、英語:messenger RNA)は、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAのことであり、通常mRNAと表記される。DNAに比べてその長さは短い。DNAからコピーした遺伝情報を担っており、その遺伝情報は、特定のアミノ酸に対応するコドンと呼ばれる3塩基配列という形になっている。 mRNAはDNAから写し取られた遺伝情報に従い、タンパク質を合成する(詳しくは翻訳)。翻訳の役目を終えたmRNAは細胞に不要としてすぐに分解され、寿命が短く、分解しやすくするために1本鎖であるともいわれている。 古細菌、真正細菌では転写されたRNAはほぼそのままでmRNAとして機能する。一方真核生物では転写されたmRNA前駆体はいくつかの切断(スプライシング)、修飾といったプロセシングを受けたのちに成熟mRNAになる。 真核生物のmRNAはRNAポリメラーゼIIによって転写されたRNAに由来する。5'末端にはm7Gキャップがあり、3'末端は一般にポリアデニル化される(poly (A)鎖で終了している)。これらの構造やmRNAの塩基配列は翻訳活性やmRNAの分解を制御する機能も持っている。古細菌、真正細菌も3'末端に短いpoly (A)鎖を持つが、5'末端のキャップ構造は持たない。 poly (A)鎖はrRNAやtRNAには存在しないmRNAの特徴であるとされており、このことを利用してmRNAを特異的に精製することができる。また、mRNAを鋳型にしてDNAを逆転写酵素によって合成することができ、これはcDNAと呼ばれる。cDNAは遺伝子が働いていることの非常に信頼性の高い証拠であり、ゲノムプロジェクトによって得られた大量のシークエンスデータの中から遺伝子を探す作業を補助することができる。.

新しい!!: RNAiと伝令RNA · 続きを見る »

ナミテントウ

ナミテントウ(並天道虫、学名: )は、コウチュウ目テントウムシ科の昆虫。テントウムシともいう。.

新しい!!: RNAiとナミテントウ · 続きを見る »

ノーベル生理学・医学賞

ノーベル生理学・医学賞(ノーベルせいりがく・いがくしょう、Nobelpriset i fysiologi eller medicin)はノーベル賞6部門のうちの一つ。「生理学および医学の分野で最も重要な発見を行った」人物に与えられる。選考はカロリンスカ研究所のノーベル賞委員会が行う。 ノーベル生理学・医学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には膝の上に本を広げつつ、病気の少女のために岩から流れる水を汲んでいる医者の姿がデザインされている。.

新しい!!: RNAiとノーベル生理学・医学賞 · 続きを見る »

モル

モル(mole, Mol, 記号: mol)は国際単位系 (SI) における物質量の単位である。SI基本単位の一つである。 名前はドイツ語の(英語では 。ともに 「分子」 の意)に由来する。モルを表す記号 mol はドイツ人の化学者ヴィルヘルム・オストヴァルトによって導入された。.

新しい!!: RNAiとモル · 続きを見る »

モデル生物

モデル生物(モデルせいぶつ)とは生物学、特に分子生物学とその周辺分野において、普遍的な生命現象の研究に用いられる生物のこと。.

新しい!!: RNAiとモデル生物 · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: RNAiとリボ核酸 · 続きを見る »

ヘテロクロマチン

ヘテロクロマチン(heterochromatin)はほとんどの場合(ただし常にではない)、細胞周期の間も常に凝縮されたクロマチンの形状、または種類のことをいう。転写されず、濃い色が観察される。セントロメアとテロメア周辺によく見つかり、主に短い配列の繰り返し構造。構造ヘテロクロマチン(Constitutive Heterochromatin)には高頻度から中頻度の繰り返し配列が含まれ、テロメアやセントロメア周辺に存在する。また、条件的ヘテロクロマチン(Facultative Heterochtomarin)は完全な染色体になる能力をもつ。例)バー小体(不活性化されたX染色体)ではほぼ全領域がヘテロクロマチン構造をとる。.

新しい!!: RNAiとヘテロクロマチン · 続きを見る »

プロテインキナーゼ

プロテインキナーゼ (Protein kinase; プロテインカイネース) は、タンパク質分子にリン酸基を付加する(リン酸化する)酵素である。タンパク質キナーゼあるいは英語風にプロテインカイネースとも呼ぶ。キナーゼ(リン酸基転移酵素)の中でタンパク質をリン酸化するキナーゼをプロテインキナーゼと呼ぶが、このプロテインキナーゼのことを特にキナーゼと呼ぶことが多い(本記事では以後単にキナーゼという)。.

新しい!!: RNAiとプロテインキナーゼ · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: RNAiとヒト · 続きを見る »

テロメア

テロメア (telomere) は真核生物の染色体の末端部にある構造。染色体末端を保護する役目をもつ。telomere はギリシア語で「末端」を意味する τέλος (telos) と「部分」を意味する μέρος (meros) から作られた語である。末端小粒(まったんしょうりゅう)とも訳される。 染色体(左)とテロメア(右・拡大):詳細は本文を参照.

新しい!!: RNAiとテロメア · 続きを見る »

アンドリュー・ファイアー

アンドリュー・Z・ファイアー(Andrew Z. Fire、1959年4月27日 - )はアメリカの生物学者である。RNA干渉の発見により、マサチューセッツ大学医学部のクレイグ・メロー教授と共に2006年のノーベル生理学・医学賞を受賞した。2012年現在は、スタンフォード大学医学部病理学および遺伝学の教授。.

新しい!!: RNAiとアンドリュー・ファイアー · 続きを見る »

イネ

イネ(稲、稻、禾)は、イネ科イネ属の植物農業・生物系特定産業技術研究機構編『最新農業技術事典』農山漁村文化協会 p.105 2006年。属名Oryza は古代ギリシア語由来のラテン語で「米」または「イネ」を意味する。種小名 sativa は「栽培されている」といった意味である。収穫物は米と呼ばれ、トウモロコシやコムギとともに世界三大穀物の1つとなっている。稲禾(とうか)、禾稲(かとう)などとも呼ばれる。.

新しい!!: RNAiとイネ · 続きを見る »

ウイルス

ウイルス()は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。生命の最小単位である細胞をもたないので、非生物とされることもある。 ヒト免疫不全ウイルスの模式図.

新しい!!: RNAiとウイルス · 続きを見る »

カエノラブディティス・エレガンス

ノラブディティス・エレガンス は、線形動物門双腺綱桿線虫亜綱カンセンチュウ目カンセンチュウ科に属する線虫の1種。実験材料として非常に優れた性質をもつことから、モデル生物として広く利用されている。多細胞生物として最初に全ゲノム配列が解読された生物でもある。通常は (シー・エレガンス)と呼ばれるため、本稿も以下はこの名称で述べる。.

新しい!!: RNAiとカエノラブディティス・エレガンス · 続きを見る »

クレイグ・メロー

レイグ・キャメロン・メロー(Craig Cameron Mello, 1960年10月18日 - )はアメリカ合衆国コネチカット州出身の学者。マサチューセッツ大学メディカル・スクール (University of Massachusetts Medical School) 教授。ブラウン大学とハーバード大学で学んだ。RNAiの発見により、スタンフォード大学のアンドリュー・ファイアー教授と共に2006年のノーベル生理学医学賞を受賞した。.

新しい!!: RNAiとクレイグ・メロー · 続きを見る »

ゲノムプロジェクト

ノムプロジェクトとは、DNAシークエンシングによって生物のゲノムの全塩基配列を解読し、タンパク質コード領域やその他のゲノム領域のアノテーションをつけることを目的としたプロジェクト。当初はヒトをはじめ、マウスや線虫などのモデル生物が主な対象であったが、多くの生物種に対象は拡大している。各国の公的研究機関がチームを組んでプロジェクトを進行させるケースが多いが、イネや小麦などの主要農産物については企業による解読もなされた。 塩基配列情報は重要なものではあるが、それだけでは生物の理解には不十分であり、遺伝子領域や制御領域の認識、それらの役割の解明などを進めていくことが望まれる。これらの研究をポストゲノムと総称する。.

新しい!!: RNAiとゲノムプロジェクト · 続きを見る »

コオロギ

(蟋蟀、蛬、蛩、蛼)は、昆虫綱バッタ目(直翅目)キリギリス亜目(剣弁亜目)コオロギ上科の総称である。分類体系によってはコオロギ科ともなるが、指し示すものは同じである。 日本ではコオロギ科コオロギ亜科に分類されるエンマコオロギ、ミツカドコオロギ、オカメコオロギ、ツヅレサセコオロギなどが代表的な種類として挙げられる。ただし人によって「コオロギ」の概念は異なり、コオロギ上科の中でもスズムシ、マツムシ、ケラなどを外すこともある。 なお、日本史上、中世以前の時代では、「蟋蟀」とはセミをも含むあらゆる鳴く昆虫を指していた。このため、現在でも学問的厳密性を要さない日常会話上では、コオロギ上科でないカマドウマやコロギス、ヒメギスなども「コオロギ」に含むことが少なからずある。.

新しい!!: RNAiとコオロギ · 続きを見る »

コクヌストモドキ

ヌストモドキ(Tribolium castaneum)は、ゴミムシダマシ科の甲虫である。世界中で穀物等の貯蔵食物にとっての害虫であり、動物行動学及び食品安全研究のモデル生物である。.

新しい!!: RNAiとコクヌストモドキ · 続きを見る »

シロアリ

アリ(白蟻)は、昆虫綱ゴキブリ目シロアリ科 (Termitidae) 、あるいはシロアリ目の昆虫の総称(詳細は分類の項を参照)。 主に植物遺体を食べる社会性昆虫である。熱帯から亜寒帯まで、陸上のほとんどの地域に分布するが、熱帯に種数が多い。いわゆる蟻塚のほとんどは、シロアリによって作られる。 シロアリにはヤマトシロアリ、イエシロアリのような下等シロアリとキノコシロアリのような沖縄以南に分布する高等シロアリがある。家屋に被害を与えるのは下等シロアリである。 木造家屋などに棲みつき木材(場合によってはコンクリートやプラスチック、動物の死骸なども食い荒らすこともある)を食い荒らす害虫として忌み嫌われるが、自然界においてはセルロースの分解に携わる重要な働きを持つ。近年ではシロアリの消化器官内の共生菌によるセルロース分解プロセスがバイオマスエタノールやバイオガスの製造に役立つ事が期待され、研究が進められる。.

新しい!!: RNAiとシロアリ · 続きを見る »

シロイヌナズナ

イヌナズナ(白犬薺、学名:Arabidopsis thaliana)は、アブラナ科シロイヌナズナ属の一年草。植物のモデル生物として有名。.

新しい!!: RNAiとシロイヌナズナ · 続きを見る »

セントロメア

ントロメア(Centromere) は染色体の長腕と短腕が交差する部位。染色体のほぼ中央に位置することからこの名がつけられている。細胞分裂時には一次狭窄を形成し、紡錘体が結合する。染色体の凝縮に関係するCENP-AやINCENP、あるいは染色体の移動に関するMCAK、CENP-Eなどが集積し、動原体と呼ばれる構造を形成する。凝集したクロマチン構造、すなわちヘテロクロマチンになっており、遺伝子発現は構成的に抑制されている。DNA は独自の繰り返し配列をとっており、塩基配列決定が困難である。C. elegans のようにセントロメアが染色体全体に広がる生物種もある。.

新しい!!: RNAiとセントロメア · 続きを見る »

タバコ

タバコ(たばこ、煙草、)は、ナス科タバコ属の熱帯地方原産の植物佐竹元吉 監修『日本の有毒植物』 学研教育出版 2012年、ISBN 9784054052697 p.192.

新しい!!: RNAiとタバコ · 続きを見る »

哺乳類

哺乳類(ほにゅうるい、英語:Mammals, /ˈmam(ə)l/、 学名:)は、脊椎動物に分類される生物群である。分類階級は哺乳綱(ほにゅうこう)とされる。 基本的に有性生殖を行い、現存する多くの種が胎生で、乳で子を育てるのが特徴である。ヒトは哺乳綱の中の霊長目ヒト科ヒト属に分類される。 哺乳類に属する動物の種の数は、研究者によって変動するが、おおむね4,300から4,600ほどであり、脊索動物門の約10%、広義の動物界の約0.4%にあたる。 日本およびその近海には、外来種も含め、約170種が生息する(日本の哺乳類一覧、Ohdachi, S. D., Y. Ishibashi, M. A. Iwasa, and T. Saitoh eds.

新しい!!: RNAiと哺乳類 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: RNAiと細胞 · 続きを見る »

線形動物

線形動物(せんけいどうぶつ、学名:Nematoda、英名:Nematode, Roundworm)は、線形動物門に属する動物の総称である。線虫ともいう。かつてはハリガネムシなどの類線形動物 (Nematomorpha) も含んだが、現在は別の門とするのが一般的。また、日本では袋形動物門の一綱として腹毛動物・鰓曳動物・動吻動物などとまとめられていたこともあった。回虫・鞭虫などが含まれる。 大半の種は土壌や海洋中で非寄生性の生活を営んでいるが、同時に多くの寄生性線虫の存在が知られる。植物寄生線虫学 (nematology) では農作物に被害をもたらす線虫の、寄生虫学 (parasitology) ではヒトや脊椎動物に寄生する物の研究が行われている。.

新しい!!: RNAiと線形動物 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: RNAiと生物 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: RNAiと遺伝子 · 続きを見る »

胚発生

胚発生(はいはっせい、英語:embryogenesis)または生物学における発生(はっせい)とは、多細胞生物が受精卵(単為発生の場合もある)から成体になるまでの過程を指す。広義には老化や再生も含まれる。発生生物学において研究がなされる。.

新しい!!: RNAiと胚発生 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: RNAiと酵素 · 続きを見る »

酵母

酵母(こうぼ)またはイースト(英語:yeast)は、広義には生活環の一定期間において栄養体が単細胞性を示す真菌類の総称である。 狭義には、食品などに用いられて馴染みのある出芽酵母の一種 Saccharomyces cerevisiae を指し、一般にはこちらの意味で使われ、酵母菌と俗称されている。 広義の「酵母」は正式な分類群の名ではなく、いわば生活型を示す名称であり、系統的に異なる種を含んでいる。 狭義の酵母は、発酵に用いられるなど工業的に重要であり、遺伝子工学の主要な研究対象の1つでもある。明治時代にビール製法が輸入されたときに、yeast の訳として発酵の源を意味する字が当てられたのが語源であるが、微生物学の発展とともにその意味するところが拡大していった。.

新しい!!: RNAiと酵母 · 続きを見る »

進化

生物は共通祖先から進化し、多様化してきた。 進化(しんか、evolutio、evolution)は、生物の形質が世代を経る中で変化していく現象のことであるRidley(2004) p.4Futuyma(2005) p.2。.

新しい!!: RNAiと進化 · 続きを見る »

逆遺伝学

逆遺伝学(ぎゃくいでんがく、)とは、着目した遺伝子の発現を抑制あるいは亢進することによって起こる表現型の変化を調べ、その遺伝子の機能を解析しようとする研究手法である。従来の遺伝学と全く逆の手順を踏んでいることから、「逆」遺伝学と呼ばれる。ただし、ウイルス学の分野においては、合成したウイルス核酸を使って、完全なウイルス粒子を人工的に作り出すことも と呼び、この場合の方法論は、他の生物のものとは異なる。 逆遺伝学は、ゲノム計画により塩基配列が網羅的に解析されたことから可能となった。一般に、研究者が破壊を試みる遺伝子は、他の生物で機能が明らかにされているものや、既知の因子と相同性の高いものが多い。 現在では、モデル生物を中心に、様々な変異体を逆遺伝学的に作製されている。.

新しい!!: RNAiと逆遺伝学 · 続きを見る »

MiRNA

miRNA (microRNA, マイクロRNA) は、ゲノム上にコードされ、多段階的な生成過程を経て最終的に20から25塩基長の微小RNAとなる機能性核酸である。 この鎖長の短いmiRNAは、機能性のncRNA (non-coding RNA, ノンコーディングRNA, 非コードRNA: タンパク質へ翻訳されないRNAの総称) に分類されており、ほかの遺伝子の発現を調節するという、生命現象において重要な役割を担っている。.

新しい!!: RNAiとMiRNA · 続きを見る »

SiRNA

siRNAによるRNA干渉。 siRNA(small interfering RNA)とは21-23塩基対から成る低分子二本鎖RNAである。siRNAはRNA干渉(RNAi)と呼ばれる現象に関与しており、伝令RNA(mRNA)の破壊によって配列特異的に遺伝子の発現を抑制する。この現象はウイルス感染などに対する生体防御機構の一環として進化してきたと考えられている。siRNAは線虫や植物における転写後の遺伝子サイレンシング機構(PTGS)として存在することが報告されていたが、その後合成のsiRNAがヒトの細胞においてRNA干渉を引き起こすことが分かり、siRNAを用いたRNA干渉は遺伝子をノックダウンする方法として生物学および医薬分野の基礎研究に応用されていると共に、臨床への応用も期待されている。.

新しい!!: RNAiとSiRNA · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: RNAiと染色体 · 続きを見る »

1998年

この項目では、国際的な視点に基づいた1998年について記載する。.

新しい!!: RNAiと1998年 · 続きを見る »

2001年

また、21世紀および3千年紀における最初の年でもある。この項目では、国際的な視点に基づいた2001年について記載する。.

新しい!!: RNAiと2001年 · 続きを見る »

2006年

この項目では、国際的な視点に基づいた2006年について記載する。.

新しい!!: RNAiと2006年 · 続きを見る »

ここにリダイレクトされます:

RNA interferenceRNA干渉

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »