ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

RNA依存性RNAポリメラーゼ

索引 RNA依存性RNAポリメラーゼ

RNA依存性RNAポリメラーゼ (RdRp)、 (RDR)、 またはRNA複製酵素とはRNAを鋳型にRNAを複製を合成する酵素である。RNAを鋳型とする点で、DNAを鋳型としてRNAの転写を行う典型的なRNAポリメラーゼ(DNA依存性RNAポリメラーゼ)と対照的である。 RNA依存性RNAポリメラーゼ (RdRp) はRNAのゲノムを保有し、かつ増殖ステップにDNAが関わらないウイルスにおいて必須のタンパク質である ただし、ウイルス粒子内にこの酵素を持つかどうかはウイルスのクラスによって異なる。具体的には二本鎖RNAをゲノムとして持つウイルスとマイナス鎖RNAをゲノムとして持つウイルスがこの酵素をウイルス粒子内に持つ一方、プラス鎖RNAをゲノムとして持つウイルスはウイルス粒子内にはこの酵素を含まない。。この酵素は鋳型のRNAと相補的となるRNAの合成を触媒する。 RNAの複製機構は2段階からなる。最初のステップは複製の開始であり、RNAの複製は鋳型RNAの3'末端、もしくはその近傍から始まる。複製開始はプライマーを必要としない方法(de novo合成)と、VPgなどのプライマーを必要とする方法とに分かれる。また、de novoの複製開始は最初のヌクレオシド三リン酸 (NTP) の3'-OHに付加される次のNTPの有無に左右される。複製開始に続く伸長過程においては、次のNTPを付加する核酸転移反応が繰り返され、最終的に相補的なRNAを生じる。RNA依存性RNAポリメラーゼはRNAワールド仮説を巡る探究の目標となっている。.

11 関係: ポリオウイルスリボ核酸ヌクレオシド三リン酸デオキシリボ核酸アクチノマイシンウイルス酵素NS5BRNAポリメラーゼRNAワールドSiRNA

ポリオウイルス

急性灰白髄炎(一般にポリオとも呼ばれる)の病原体、ポリオウイルス (Poliovirus) は、ピコルナウイルス科エンテロウイルス属に属する、ヒトを宿主とするウイルスである。 ポリオウイルスは約7500塩基対で1本鎖の+鎖RNAゲノムと、タンパク質でできたカプシドから構成される。ウイルス粒子は直径約30nmの正20面体構造も持つ。ゲノムが短い、エンベロープを持たずRNAとそれを包む正20面体の形状をしたカプシドのみからなる単純な構成であると言った特徴から、重要なウイルスの中では最もシンプルなウイルスであると認識されている。 ポリオウイルスは1909年にカール・ラントシュタイナーとErwin Popperの2人によって初めて分離された。1981年には2つの研究グループ、MITのVincent Racanielloとデビッド・ボルティモアのグループ、およびニューヨーク州立大学ストーニーブルック校の喜多村直実とEckard Wimmerのグループがそれぞれポリオウイルスのゲノムを報告している。ポリオウイルスは非常に研究が進んでいるウイルスの1つであり、RNAウイルスの生態を理解する上で役に立つモデルとなっている。.

新しい!!: RNA依存性RNAポリメラーゼとポリオウイルス · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: RNA依存性RNAポリメラーゼとリボ核酸 · 続きを見る »

ヌクレオシド三リン酸

ヌクレオシド三リン酸(Nucleoside triphosphate、NTP)は、3つのリン酸が結合したヌクレオシドを含む分子である。天然のヌクレオシド三リン酸には、アデノシン三リン酸(ATP)、グアノシン三リン酸(GTP)、シチジン三リン酸(CTP)、5-メチルウリジン三リン酸(m5UTP)、ウリジン三リン酸(UTP)がある。これらの用語は、リボースを含むヌクレオシド三リン酸に対しても使われる。デオキシリボースを含むヌクレオシド三リン酸は、名前の前に「デオキシ」という接頭辞を付け、略称には"d"を付ける。デオキシアデノシン三リン酸(dATP)、デオキシグアノシン三リン酸(dGTP)、デオキシシチジン三リン酸(dCTP)、デオキシチミジン三リン酸(dTTP)、デオキシウリジン三リン酸がある。 (d)ATP、(d)GTP、(d)CTP、(d)TTP、(d)UTP以外にも、ヌクレオチド代謝の中間体など、多量には存在しないヌクレオシド三リン酸もあるが、さらに「珍しい」天然のヌクレオチドや人工のヌクレオチドさえある。珍しいヌクレオチドは、通常のヌクレオチドの互変異性体である。これらは、DNA複製の際にミスマッチ塩基対を作る。例えば、シトシンの互変異性体は、アデニンと3つの水素結合を形成することができ、元々のシトシンと入れ替わってミスマッチを引き起こす。同様に、シトシンの脱アミノ化物はウラシル、真核生物ではよく見られる5-メチルシトシンの脱アミノ化物はチアミンを誘導する。しかし、5'から16'のDNA複製では、このようなミスマッチ塩基は削除される。 ヌクレオチド誘導体は、核酸の構成ブロックとなり、その他、細胞内の代謝や制御に数千の役割を持つため、生物にとって必須である。ATPは、細胞のエネルギーの主要な源である。GTPはしばしば酵素やタンパク質の補因子となる。また、ヌクレオシド三リン酸はリン酸化の際にエネルギーやリン酸基の供給源となる。 一般的に、ヌクレオシドは、ヌクレオチド(窒素塩基に糖が共有結合したもの)がリン酸基を欠いたものである。しかし、専門用語としては、ヌクレオチドは、ヌクレオシドにリン酸基の数を付して表される。例えば、ヌクレオチドがリン酸基を1つ持っていれば、ヌクレオチド一リン酸、ヌクレオチドがリン酸基を2つ持っていれば、ヌクレオチド二リン酸、3つ持っていればヌクレオチド三リン酸と呼ばれる。リボース糖を含むヌクレオチドは、リボ核酸のモノマーとなり、デオキシリボースを含むヌクレオチドは、デオキシリボ核酸のモノマーとなる。 ヌクレオシド三リン酸、ヌクレオシド二リン酸、及びヌクレオシド一リン酸は、細胞質、細胞核、細胞小器官内に遍在する。多様な機能を持っているため、そのレベルは厳しい代謝制御下にある。 Category:核酸 Category:ヌクレオチド.

新しい!!: RNA依存性RNAポリメラーゼとヌクレオシド三リン酸 · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: RNA依存性RNAポリメラーゼとデオキシリボ核酸 · 続きを見る »

アクチノマイシン

アクチノマイシンは、放線菌が産生するポリペプチド系の抗生物質である。ペプチド配列の違いにより20種以上が知られているが、特にアクチノマイシンDは研究用試薬や抗がん剤として利用されている。商品名ダクチノマイシン。.

新しい!!: RNA依存性RNAポリメラーゼとアクチノマイシン · 続きを見る »

ウイルス

ウイルス()は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。生命の最小単位である細胞をもたないので、非生物とされることもある。 ヒト免疫不全ウイルスの模式図.

新しい!!: RNA依存性RNAポリメラーゼとウイルス · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: RNA依存性RNAポリメラーゼと酵素 · 続きを見る »

NS5B

C型肝炎ウイルスのゲノム 非構造タンパク質5B (NS5B) はC型肝炎ウイルス (HCV)の持つウイルス性タンパク質である。HCVのRNA複製において重要な役割を持ち、HCVの+鎖RNAを鋳型にしてリボヌクレオシド三リン酸 (rNTP) の重合反応を触媒する。 ポリメラーゼであるNS5Bの結晶構造は、BK株(HCV-BK、遺伝子型1b)が持つ同一の共通配列に基づいて決定された 。HCVの構造はfingers、palm、thumbのドメインを持つ右手構造で表される。 NS5Bの独特な特徴は周りに囲まれた活性部位がpalmの内部に存在する事である。近年なされた遺伝子型1b、HC-J4株由来NS5Bの構造解析は、ヌクレオチドとの結合を制御し、プライマーを必要としないRNAのde-novo合成を可能にする活性中心の存在を示した。De-novo合成においてはRNA複製の開始に必要なプライマーから合成を行う。現在の研究においてはウイルスRNAの複製を抑える、活性部位に結合してNS5Bの機能性を変化させる物質の探索が行われている。.

新しい!!: RNA依存性RNAポリメラーゼとNS5B · 続きを見る »

RNAポリメラーゼ

RNAポリメラーゼ (RNA polymerase) とは、リボヌクレオチドを重合させてRNAを合成する酵素。DNAの鋳型鎖(一本鎖)の塩基配列を読み取って相補的なRNAを合成する反応(転写)を触媒する中心となる酵素をDNA依存性RNAポリメラーゼという(単に「RNAポリメラーゼ」とも呼ぶ)。「ポリメラーゼ」は、より英語発音に近い「ポリメレース」と呼ばれることも多い。 真核生物では、DNAを鋳型にしてmRNAやsnRNA遺伝子の多くを転写するRNAポリメラーゼIIがよく知られる。このほかに35S rRNA前駆体を転写するRNAポリメラーゼI、tRNAとU6 snRNA、5S rRNA前駆体等を転写するRNA ポリメラーゼIIIなどがあり、上記三種は DNA依存性RNAポリメラーゼと呼ばれる。また、RNAを鋳型にRNA を合成するRNA依存性RNAポリメラーゼもあり、多くのRNAウイルスで重要な機能を果たす以外に、microRNAの増幅過程にも利用される。 鋳型を必要としない物もあり、初めて発見されたRNA ポリメラーゼであるポリヌクレオチドホスホリラーゼ(ポリヌクレオチドフォスフォリレース、ポリニュークリオタイドフォスフォリレース)もそのひとつとしてあげられる。この酵素は実際には細菌の細胞内でヌクレアーゼとして働くが、試験管内ではRNA を合成することができる。これを利用して一種類のヌクレオチドからなるRNAを合成し、それから翻訳されるタンパク質を調べることで初めて遺伝暗号の決定が行われた。真核生物のもつpoly(A)ポリメラーゼも同様に鋳型を必要とせず、Pol II転写産物の3'末端にpoly(A)鎖を付加することで転写後の遺伝子発現制御機構の一端を担っている。 真核生物の転写装置(RNAポリメラーゼ)は、Pol I、Pol II、Pol IIIの3種がある。それぞれ10種類以上ものサブユニットから構成される(基本的には12種)。また、古細菌のRNAポリメラーゼもサブユニット数が多く、9-14種のサブユニットから構成されている。ユリアーキオータではいくつかのサブユニットが省かれているが、一部のクレンアーキオータには真核生物の12種類のサブユニットが全て保存されており、真核生物の持つ3種のRNAポリメラーゼの祖先型と考えられている。古細菌のRNAポリメラーゼは、Aサブユニットが2つに分かれている特徴がある。 一方で、真正細菌のRNAポリメラーゼは全体的に真核生物や古細菌のものより単純な構成である。ααββ'ωの4種5サブユニットからなるコアエンザイムに、σが会合したホロエンザイムと呼ばれる形態で正常なプロモーターを認識する。シグマ因子は遺伝子上流のプロモーター配列を認識して転写を開始する役割を担っている。.

新しい!!: RNA依存性RNAポリメラーゼとRNAポリメラーゼ · 続きを見る »

RNAワールド

RNA ワールドとは原始地球上に存在したと仮定される、RNA からなる自己複製系のこと。また、これがかつて存在し、現生生物へと進化したという仮説を RNA ワールド仮説と呼ぶ。これに対し、まずアミノ酸ができ、重合してポリペプチド、さらにタンパク質が作り出され、これが触媒として働いて生命を作り出したという仮説をプロテインワールド仮説という。RNAワールドという学名は1986年、ウォルター・ギルバートによって提唱された。.

新しい!!: RNA依存性RNAポリメラーゼとRNAワールド · 続きを見る »

SiRNA

siRNAによるRNA干渉。 siRNA(small interfering RNA)とは21-23塩基対から成る低分子二本鎖RNAである。siRNAはRNA干渉(RNAi)と呼ばれる現象に関与しており、伝令RNA(mRNA)の破壊によって配列特異的に遺伝子の発現を抑制する。この現象はウイルス感染などに対する生体防御機構の一環として進化してきたと考えられている。siRNAは線虫や植物における転写後の遺伝子サイレンシング機構(PTGS)として存在することが報告されていたが、その後合成のsiRNAがヒトの細胞においてRNA干渉を引き起こすことが分かり、siRNAを用いたRNA干渉は遺伝子をノックダウンする方法として生物学および医薬分野の基礎研究に応用されていると共に、臨床への応用も期待されている。.

新しい!!: RNA依存性RNAポリメラーゼとSiRNA · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »