ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

正則局所環

索引 正則局所環

可換環論において、正則局所環(せいそくきょくしょかん、regular local ring)とは、ネーター局所環 (A, \mathfrak) であって、剰余体 k.

19 関係: 可換体可換環論大局次元完備化 (環論)局所環一意分解環代数多様体代数多様体の特異点代数幾何学形式的冪級数ハメル次元ベクトル空間クルル次元コーエン・マコーレー環ゴレンシュタイン環剰余体離散付値環P進数次数付き環

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 正則局所環と可換体 · 続きを見る »

可換環論

可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。.

新しい!!: 正則局所環と可換環論 · 続きを見る »

大局次元

論とホモロジー代数において、環 A の左(右)大局次元あるいは大域次元(global dimension)(または大局ホモロジー次元(global homological dimension)、ときには単にホモロジー次元(homological dimension)と呼ばれる)は、すべての左(右) A-加群の射影次元の集合の上限として定義される環のホモロジー的不変量である。それは非負の整数か無限大に値をとり l. gl. dim A (r. gl. dim A )と書かれる。さらに両者が一致するときには単に大局次元と言い gl. dim A と書かれる。 一般の非可換環 A に対しては左と右の大局次元は異なるかもしれない。しかしながら、A が左かつ右ネーター環であれば、これらの大局次元は両方とも、定義が左右対称的な弱大局次元に等しいことがわかる。したがって、左かつ右ネーター環に対しては、両者は一致し、大局次元について話すことが正当化される。 大局次元は可換ネーター環の次元論で重要な技術的概念である。.

新しい!!: 正則局所環と大局次元 · 続きを見る »

完備化 (環論)

抽象代数学において、完備化(かんびか、completion)とは、環や加群上の関手であって、完備な位相環や加群になるような任意のものである。完備化は局所化と類似しており、これらは可換環を解析する最も基本的な手法である。完備可換環は一般の環よりも単純な構造をもっており、が適用される。 \hat M defined in a way analogous to the completion of a metric space using Cauchy sequences.

新しい!!: 正則局所環と完備化 (環論) · 続きを見る »

局所環

抽象代数学における局所環(きょくしょかん、local ring)は、1938年にヴォルフガンク・クルルによって導入された概念で、比較的簡単な構造を持つ環であり、代数多様体や可微分多様体上で定義される関数の、あるいは代数体を座や素点上の関数として見るときの「局所的な振る舞い」を記述すると考えられるものである。局所環およびその上の加群について研究する可換環論の一分野を局所環論と呼ぶ。.

新しい!!: 正則局所環と局所環 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 正則局所環と一意分解環 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: 正則局所環と代数多様体 · 続きを見る »

代数多様体の特異点

代数幾何学という数学の分野において、代数多様体 V の特異点 (singular point of an algebraic variety) は、この点において多様体の接空間をきちんと決められないという幾何学的な意味で'特別な'(つまり特異な)点 P である。実数体上定義された多様体の場合には、この概念は非の概念を一般化する。代数多様体の特異でない点を正則 (regular) という。特異点を全く持たない代数多様体を非特異 (non singular) あるいは滑らか (smooth) という。 例えば、方程式 の定める平面代数曲線()は、原点 (0,0) で自己交叉し、したがって原点は曲線の二重点である。それは特異である、なぜならばただ1つの接線がそこで正しく定義されないからである。 より一般に F を滑らかな関数として陰関数 で定義される平面曲線がある点で特異であるとは、F のテイラー級数のその点でのが少なくとも 2 であるということである。 その理由は、微分学において、そのような曲線の点 (x0, y0) における接線は、左辺がテイラー展開の一次の項であるような方程式 によって定義されることである。したがって、この項が0であれば、接線は通常の方法では定義できない。接線はそもそも存在しない、あるいは、特別な定義をしなければならない。 一般に超曲面 に対して特異点 (singular point) はすべての偏微分が同時に消えるような点である。いくつかの多項式の共通零点として定義される一般の代数多様体 V に対しては、V の点 P が特異点であるとは多項式の一次の偏微分のヤコビ行列が P において多様体の他の点の行列のランクよりも低いランクをもつということである。 特異でない V の点を非特異 (non-singular) あるいは正則 (regular) という。たいていの点は非特異であるということは次のような意味で常に正しい。非特異点全体は空でない開集合をなす。 (実係数の多項式で定義された多様体の実座標の点の集合である)実多様体の場合には、多様体 (variety) はすべての正則点の近くで多様体 (manifold) である。しかし実多様体 (variety) は多様体 (manifold) であり特異点をもつかもしれないことを注意することは重要である。例えば方程式 y^3 + 2 x^2 y - x^4.

新しい!!: 正則局所環と代数多様体の特異点 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 正則局所環と代数幾何学 · 続きを見る »

形式的冪級数

数学において、形式的冪級数(けいしきてきべききゅうすう、formal power series)とは、(形式的)多項式の一般化であり、多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。例えば、( を不定元として) は(多項式ではない)冪級数である。.

新しい!!: 正則局所環と形式的冪級数 · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: 正則局所環とハメル次元 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 正則局所環とベクトル空間 · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: 正則局所環とクルル次元 · 続きを見る »

コーエン・マコーレー環

数学において、コーエン・マコーレー環 (Cohen–Macaulay ring, CM ring) は局所のような非特異多様体の代数幾何的な性質のいくつかをもった可換環のタイプである。 それらは純性定理を多項式環に対して証明したと、純性定理を形式的冪級数環に対して証明したのために名づけられている。すべての Cohen–Macaulay 環は純性定理が成り立つ。 可換ネーター局所環については次の包含関係が成り立つ。.

新しい!!: 正則局所環とコーエン・マコーレー環 · 続きを見る »

ゴレンシュタイン環

可換環論において、Gorenstein 局所環 (Gorenstein local ring) はネーター可換局所環 R であって、R-加群として有限の移入次元をもつものである。同値な条件がたくさんあり、そのうちのいくつかは以下にリストされるが、多くはある種の双対の条件を扱う。 Gorenstein 環は Grothendieck によって導入され、彼が名前を付けたが、その理由は によって研究された特異平面曲線の双対の性質との関係である(Gorenstein は Gorenstein 環の定義を理解していないと主張することを好んだ)。0次元のケースは によって研究されていた。 と は Gorenstein 環の概念を公表した。 0次元 Gorenstein 環の非可換環における類似はフロベニウス環と呼ばれる。 ネーター局所環については次の包含関係が成り立つ。.

新しい!!: 正則局所環とゴレンシュタイン環 · 続きを見る »

剰余体

数学において、剰余体(じょうよたい、residue field)は可換環論における基本的な構成である。R を可換環、m を極大イデアルとしたとき、剰余体は剰余環 k.

新しい!!: 正則局所環と剰余体 · 続きを見る »

離散付値環

抽象代数学において、離散付値環(りさんふちかん、discrete valuation ring、略して DVR)とは、ちょうど1つの0でない極大イデアルをもつ単項イデアル整域(PID)である。 このことは DVR は次の同値な条件のうち1つを満たす整域 R であることを意味する。.

新しい!!: 正則局所環と離散付値環 · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: 正則局所環とP進数 · 続きを見る »

次数付き環

数学、特に抽象代数学において、次数付き環(じすうつきかん、graded ring; 次数付けられた環)あるいは次数環とは R_i R_j \subset R_ を満たすアーベル群 R_i の直和として表すことのできる環のことである。多項式環の斉次多項式への分解を一般化した概念である。添え字集合は通常非負の整数の集合か整数の集合であるが、任意のモノイドあるいは群でもよい。直和分解は通常次数化(gradation)あるいは次数付け(grading)と呼ばれる。 次数(付き)加群(graded module)は同様に定義される(正確な定義は下を見よ)。これは次数付きベクトル空間の一般化である。次数付き環でもあるような次数付き加群は次数付き代数(graded algebra)と呼ばれる。次数付き環は次数付き Z-代数と見なすこともできる。 結合性は次数付き環の定義において重要でない(実は全く使われない)。したがってこの概念は非結合的多元環に対しても適用できる。例えば、を考えることができる。.

新しい!!: 正則局所環と次数付き環 · 続きを見る »

ここにリダイレクトされます:

RLR

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »