ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

酸化還元電位

索引 酸化還元電位

酸化還元電位(さんかかんげんでんい、Redox potentialもしくはOxidation-reduction Potential; ORP)とは、ある酸化還元反応系における電子のやり取りの際に発生する電位(正しくは電極電位)のことである。物質の電子の放出しやすさ、あるいは受け取りやすさを定量的に評価する尺度でもある。単位はボルト(V)を用い、電極電位の基準には以下の半反応式で表される酸化還元反応を用いる。 つまり水素ガス分圧が1気圧、水素イオンの活量が1のとき(これを標準水素電極と呼ぶ)の電極電位を0 Vと定義する。この半反応を基準とし、任意の酸化還元反応の電極電位が決定される。すなわち、標準水素電極(SHE; standard hydrogen electrodeもしくはNHE; normal hydrogen electrode)を陰極反応、電極電位を求めたい酸化還元反応を陽極反応にそれぞれ使い、電池を組み立てたときの電池の起電力が、求めたい電極電位となる。このとき、電極電位を求めたい酸化還元反応に関与する物質の活量(あるいは分圧)がすべて1の場合の電極電位を特に、標準酸化還元電位(ひょうじゅん-)あるいは標準電極電位と呼んでいる。 なお基準として用いた標準水素電極(SHE)は水素イオンの活量が1すなわち水素イオン指数がゼロ(pH 0)の環境であり生化学ではこうした極限状態の値では参考にならないためにpH 7での電位を求める中間酸化還元電位(ちゅうかん-、中点とも表記することがある)を基準に用いることがあるが、特に断ることなしにこれを単に酸化還元電位と書くことが多い。いずれにせよ、実際の研究では標準水素電極の代わりに、銀−塩化銀電極やカロメル電極など実用的な基準電極を基準にして酸化還元電位を測定することが頻繁に行なわれる。したがって、酸化還元電位を表記する際(特に標準水素電極以外の基準電極を用いた場合)には、その旨を必ず明記せねばならない。.

45 関係: 基準電極嫌気呼吸マンガンネルンストの式メチレンブルーメタン菌ユビキノンリボフラビンボルト (単位)パラコートフラビンアデニンジヌクレオチドファラデー定数フェレドキシンフェオフィチンニコチンアミドアデニンジヌクレオチドニコチンアミドアデニンジヌクレオチドリン酸カルビン回路キノンクーロンクエン酸回路シトクロムシステイン光合成光化学反応硝化作用硫化ナトリウム窒素紅色細菌緩衝液生化学熱力学温度解糖系還元脱窒酸化酸化還元反応酸素鉄・硫黄クラスター電子電子伝達系電位標準電極電位水素イオン指数気体定数

基準電極

基準電極(きじゅんでんきょく、reference electrode)とは、電極電位の測定時に電位の基準点を与える電極のこと。 参照電極(さんしょうでんきょく)、照合電極(しょうごうでんきょく)ともいう。 電位の基準点を与えるという性質上、基準電極にはその電極電位の安定性と再現性が要求される。 すなわち、.

新しい!!: 酸化還元電位と基準電極 · 続きを見る »

嫌気呼吸

嫌気呼吸(けんきこきゅう)とは、最終電子受容体として酸素を用いない呼吸の総称である。アルコール発酵など発酵とは異なり、電子伝達系や酸化的リン酸化過程によってATPを合成する。.

新しい!!: 酸化還元電位と嫌気呼吸 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

新しい!!: 酸化還元電位とマンガン · 続きを見る »

ネルンストの式

ネルンストの式(Nernst equation)とは、電気化学において、電池の電極の電位 E を記述した式である。1889年にヴァルター・ネルンストによって提出されたとされるが、実際にネルンストが提出した式や考え方は、現在知られているものとは異なる。現在、広く受け入れられている式は、化学ポテンシャルの考え方に基づいて導出される。.

新しい!!: 酸化還元電位とネルンストの式 · 続きを見る »

メチレンブルー

メチレンブルー(Methylenblau、methylene blue)は、色素の1種である。メチレン青とも言う。IUPAC名は 3,7-ビス(ジメチルアミノ)フェノチアジニウムクロリド。.

新しい!!: 酸化還元電位とメチレンブルー · 続きを見る »

メタン菌

''Methanosarcina barkeri'' メタン菌(メタンきん、Methanogen)とは嫌気条件でメタンを合成する古細菌の総称である。動物の消化器官や沼地、海底堆積物、地殻内に広く存在し、地球上で放出されるメタンの大半を合成している。分類上は全ての種が古細菌ユリアーキオータ門に属しているが、ユリアーキオータ門の中では様々な位置にメタン菌が現れており、起源は古いと推測される。35億年前の地層(石英中)から、生物由来と思われるメタンが発見されている。 メタン菌の特徴は嫌気環境における有機物分解の最終段階を担っており、偏性嫌気性菌とはいえ、他の古細菌(高度好塩菌や好熱菌など)とは異なり、他の菌と共生あるいは基質の競合の中に生育している。ウシの腸内(ルーメン)や、数は少ないものの人の結腸などにも存在し、比較的身近な場所に生息する生物として認知されている。また、汚泥や水質浄化における応用等も試みられている。 別名、メタン生成菌、メタン生成古細菌など。かつてはメタン生成細菌と呼ばれていたこともあったが、古細菌に分類されるに伴い現在はあまり使われない。.

新しい!!: 酸化還元電位とメタン菌 · 続きを見る »

ユビキノン

ユビキノン(略号:UQ)とは、ミトコンドリア内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、電子伝達系において呼吸鎖複合体IとIIIの電子の仲介を果たしている。ベンゾキノン(単にキノンでも良い)の誘導体であり、比較的長いイソプレン側鎖を持つので、その疎水性がゆえに膜中に保持されることとなる。酸化還元電位 (Eo') は+0.10V。ウシ心筋ミトコンドリア電子伝達系の構成成分として1957年に発見された。 広義には電子伝達体としての意味合いを持つが、狭義には酸化型のユビキノンのことをさす。還元型のユビキノンはユビキノールと呼称していることが多い。別名、補酵素Q、コエンザイムQ10(キューテン)、CoQ10、ユビデカレノンなど。かつてビタミンQと呼ばれたこともあるが、動物体内で合成することができるためビタミンではない。.

新しい!!: 酸化還元電位とユビキノン · 続きを見る »

リボフラビン

リボフラビン (Riboflavin) は、ビタミンB2 (Vitamin B2) 、ラクトフラビン(Lactoflavine)とも呼ばれ、ビタミンの中で水溶性ビタミンに分類される生理活性物質で、ヘテロ環状イソアロキサジン環に糖アルコールのリビトールが結合したものである。かつては成長因子 (growth factor) として知られていたことからビタミンGと呼ばれたこともある。.

新しい!!: 酸化還元電位とリボフラビン · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: 酸化還元電位とボルト (単位) · 続きを見る »

パラコート

パラコート (Paraquat) はビピリジニウム系に分類される非選択型除草剤のひとつで、イギリスのインペリアル・ケミカル・インダストリーズ (ICI) 社が開発した。既に1882年に発見、合成されていたが、除草剤としての特性が認識されたのは1955年になってからだった。元々はメチルビオローゲン(methyl viologen)という名前の酸化還元指示薬であり、パラコートは商標名であったが今日では一般名として使われる。葉だけを枯らして、木や根は枯らさない。即効性は強いが持続性はない。散布後はすぐに土壌に固着して不活性化するため、すぐに作物を植えることが出来ることや、安価で経済的という点から、広く用いられてきた。 活性酸素を発生させる力が強いため、活性酸素の研究に使われることもある。 日本ではパラコート原体がイギリスから輸入されて製剤化されているが、1999年までは製造ライセンスを得て国内生産されていたこともある。毒性が強く、自殺や他殺事件を数多く引き起こして問題になったことがある農薬でもある。また非農耕地用として農薬登録を受けずに販売された製剤もあったため、農林水産省はなるべく登録するように指導したことがあった。.

新しい!!: 酸化還元電位とパラコート · 続きを見る »

フラビンアデニンジヌクレオチド

フラビンアデニンジヌクレオチド(flavin adenine dinucleotide、FAD)は、いくつかの代謝反応に必要な酸化還元反応の補因子である。FADには2種の酸化還元状態が存在し、それらの生化学的役割は2種の間で変化する。FADは還元されることによって2原子の水素を受容し、FADH2となる。 FADH2はエネルギーキャリアであり、還元された補酵素はミトコンドリアでの酸化的リン酸化の基質として使われる。FADH2は酸化されてFADとなり、これは一般的なエネルギーキャリアのATPを2分子作ることが可能である。真核生物の代謝でのFADの一次供給源はクエン酸回路とβ酸化である。クエン酸回路では、FADはコハク酸をフマル酸に酸化するコハク酸デヒドロゲナーゼの補欠分子族である。一方、β酸化ではアシルCoAデヒドロゲナーゼの酵素反応の補酵素として機能する。 FADはリボフラビン(ビタミンB2)から誘導される。いくつかの酸化還元酵素はフラボ酵素またはフラビンタンパク質(フラボプロテイン)と呼ばれ、電子移動において機能する補欠分子族としてFADを要する。 Category:フラビン Category:ヌクレオチド Category:補因子.

新しい!!: 酸化還元電位とフラビンアデニンジヌクレオチド · 続きを見る »

ファラデー定数

ファラデー定数(ふぁらでーていすう、Faraday constant)は、電子の物質量あたり電荷(の絶対値)にあたる物理定数である。なお電子に限らず、陽子、陽電子、1価イオンなど、電荷の絶対値が電気素量に等しい (|Q|.

新しい!!: 酸化還元電位とファラデー定数 · 続きを見る »

フェレドキシン

フェレドキシン は、内部に鉄-硫黄クラスター (Fe-Sクラスター) を含む鉄硫黄タンパク質の一つであり、電子伝達体として機能する。ヘムを含まない非ヘムタンパク質(他にルブレドキシン、高電位鉄-硫黄タンパク質など)のひとつであり、動物から原核生物まで広く分布する。光合成、窒素固定、炭酸固定、水素分子の酸化還元など主要な代謝系に用いられる。酸化還元電位 (E0') は−0.43V。略号はFdである。 比較的小さなタンパク質であるために、エドマン分解法などで古くからアミノ酸配列が調べられ、生物の系統解析などに使用されていた。しかしながら現在は情報量が少ないこともあいまって系統解析に使用されることはない。.

新しい!!: 酸化還元電位とフェレドキシン · 続きを見る »

フェオフィチン

フェオフィチン(Pheophytin)は、クロロフィル分子からマグネシウムイオンがとれて水素原子2つと置き換わったものの総称である。.

新しい!!: 酸化還元電位とフェオフィチン · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: 酸化還元電位とニコチンアミドアデニンジヌクレオチド · 続きを見る »

ニコチンアミドアデニンジヌクレオチドリン酸

ニコチンアミドアデニンジヌクレオチドリン酸(ニコチンアミドアデニンジヌクレオチドリンさん、)とは、光合成経路あるいは解糖系のエントナー-ドウドロフ経路などで用いられている電子伝達体である。化学式:C21H21N7O17P3、分子量:744.4。ニコチンアミドアデニンジヌクレオチドと構造上良く似ており、脱水素酵素の補酵素として一般的に機能している。略号であるNADP+(あるいはNADP)として一般的には良く知られている。酸化型 (NADP+) および還元型 (NADPH) の2つの状態を有し、二電子還元を受けるが中間型(一電子還元型)は存在しない。 かつては、トリホスホピリジンヌクレオチド (TPN)、補酵素III、コデヒドロゲナーゼIII、コエンザイムIIIなどと呼称されていたが、現在はNADP+に統一されている。別名、ニコチン酸アミドジヌクレオチドリン酸など。.

新しい!!: 酸化還元電位とニコチンアミドアデニンジヌクレオチドリン酸 · 続きを見る »

カルビン回路

ルビン回路(カルビンかいろ)は、光合成反応における代表的な炭酸固定反応である。ほぼすべての緑色植物と光合成細菌がこの回路を所持している。1950年にメルヴィン・カルヴィン、、によって初めて報告された。ベンソンの名を加えてカルビン・ベンソン回路とも呼ばれる。 光化学反応により生じた NADPH および ATP が駆動力となって回路が回転し、最終的にフルクトース-6-リン酸から糖新生経路に入り、多糖(デンプン)となる。この回路の中核である炭酸固定反応を担うリブロースビスリン酸カルボキシラーゼ (RubisCO) は地球上でもっとも存在量の多い酵素であると言われている。 反応自体は光がなくても進行するため、光が不可欠な光化学反応(明反応)と対比して暗反応とも呼ばれる。ただし、反応にかかわる酵素のうち、RubisCO をはじめとする複数の酵素は光によって間接的に活性化されるため、暗所では炭酸固定活性が低下する。C3の化合物で行われているので、C3型光合成ともいう。.

新しい!!: 酸化還元電位とカルビン回路 · 続きを見る »

キノン

ノン (quinone) は、一般的にはベンゼン環から誘導され、2つのケトン構造を持つ環状の有機化合物の総称である。七員環構造のものなど、非ベンゼン系のキノンも知られている。この構造が含まれていると、ピロロキノリンキノンなどのように、〜キノンと化合物の末尾につけることとされている。.

新しい!!: 酸化還元電位とキノン · 続きを見る »

クーロン

ーロン(、記号C)は、電荷のSI単位である。クーロンという名称は、フランスの物理学者、シャルル・ド・クーロンの名にちなむ。.

新しい!!: 酸化還元電位とクーロン · 続きを見る »

クエン酸回路

ン酸回路。クリックで拡大 クエン酸回路(クエンさんかいろ)とは好気的代謝に関する最も重要な生化学反応回路であり、酸素呼吸を行う生物全般に見られる。1937年にドイツの化学者ハンス・クレブスが発見し、この功績により1953年にノーベル生理学・医学賞を受賞している。 解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている。またアミノ酸などの生合成の前駆体も供給する。 クエン酸回路の呼称は高等学校の生物学でよく用いられるが、大学以降ではTCA回路、TCAサイクル (tricarboxylic acid cycle) と呼ばれる場合が多い。その他に、トリカルボン酸回路、クレブス回路 (Krebs cycle) などと呼ばれる場合もある。.

新しい!!: 酸化還元電位とクエン酸回路 · 続きを見る »

シトクロム

トクロム(cytochrome, cyt、Zytochrom, Cytochrom)は、酸化還元機能を持つヘム鉄を含有する、ヘムタンパク質の一種である。1886年にMacMunnによって存在が指摘され、1925年にデーヴィッド・ケイリン によるウマの胃に寄生するヒツジバエ科ウマバエ幼虫を用いた研究によって酸化還元機能を持ち好気呼吸に重要な役割を持つことが実証された。 チトクロム、サイトクロム、シトクロームなどと呼ばれることもある。.

新しい!!: 酸化還元電位とシトクロム · 続きを見る »

システイン

テイン (cysteine、2-アミノ-3-スルファニルプロピオン酸) はアミノ酸の1つ。チオセリンとも言う。天然にはL-システインとして、食品中タンパク質に含まれるが、ヒトでは必須アミノ酸ではなくメチオニンから生合成される。食品添加剤として利用され、また俗に肌のシミを改善するといったサプリメントが販売されている。日本国外で商品名Acetiumの除放剤は、胃の保護また、飲酒時などのアセトアルデヒドするために開発され販売されている。 側鎖にメルカプト基を持つ。酸性条件下では安定だが、中・アルカリ性条件では、微量の重金属イオンにより容易に空気酸化され、シスチンとなる。略号は C や Cys。酸化型のシスチンと対比し、還元型であることを明らかにするために CySH と記されることもある。.

新しい!!: 酸化還元電位とシステイン · 続きを見る »

光合成

光合成では水を分解して酸素を放出し、二酸化炭素から糖を合成する。 光合成の主な舞台は植物の葉である。 光合成(こうごうせい、Photosynthese、photosynthèse、拉、英: photosynthesis)は、主に植物や植物プランクトン、藻類など光合成色素をもつ生物が行う、光エネルギーを化学エネルギーに変換する生化学反応のことである。光合成生物は光エネルギーを使って水と空気中の二酸化炭素から炭水化物(糖類:例えばショ糖やデンプン)を合成している。また、光合成は水を分解する過程で生じた酸素を大気中に供給している。年間に地球上で固定される二酸化炭素は約1014kg、貯蔵されるエネルギーは1018kJと見積もられている『ヴォート生化学 第3版』 DONALDO VOET・JUDITH G.VOET 田宮信雄他訳 東京化学同人 2005.2.28。 「光合成」という名称を初めて使ったのはアメリカの植物学者チャールズ・バーネス(1893年)である『Newton 2008年4月号』 水谷仁 ニュートンプレス 2008.4.7。 ひかりごうせいとも呼ばれることが多い。かつては炭酸同化作用(たんさんどうかさよう)とも言ったが現在はあまり使われない。.

新しい!!: 酸化還元電位と光合成 · 続きを見る »

光化学反応

光化学反応(こうかがくはんのう、photochemical reaction, light‐dependent reaction)は、物質が光を吸収して化学反応を起こす現象であり、一般には、色素分子が光エネルギーを吸収し、励起された電子が飛び出し、物質の酸化還元を引き起こす。光合成における光化学反応では、特定のクロロフィル分子がこの反応を起こし、還元物質NADPHやATPの合成の源となる。酸素発生型光合成では光化学反応により水を電子供与体として用い、酸素を発生し(.

新しい!!: 酸化還元電位と光化学反応 · 続きを見る »

硝化作用

素循環のモデル図硝化作用(しょうかさよう)はアンモニアから亜硝酸や硝酸を生ずる微生物による作用を指す。アンモニアを酸化し亜硝酸を生ずるアンモニア酸化細菌・アンモニア酸化古細菌、亜硝酸を酸化し硝酸を生ずる亜硝酸酸化細菌により反応が進む。これらの細菌は独立栄養細菌で、それぞれアンモニアの酸化、亜硝酸の酸化によりエネルギーを得る。有機成分の存在下ではほとんど増殖せず、死滅することもある。 土の中では、有機物に含まれる有機態窒素がアンモニアまで分解されるアンモニア化成、アンモニアから硝酸を生ずる硝酸化成が進み、作物に吸収される。 野菜など多く園芸作物はアンモニア態窒素より硝酸態窒素を好んで吸収する好硝酸性植物であるため、この反応はきわめて重要である。アンモニア濃度が高く、硝酸化成が進まない場合、アンモニア過剰障害が生じることがある。.

新しい!!: 酸化還元電位と硝化作用 · 続きを見る »

硫化ナトリウム

硫化ナトリウム(りゅうかナトリウム、sodium sulfide)は化学式 Na2S で表されるナトリウムの硫化物である。普通は9水和物の形で存在し、これは無色の結晶である。硫化ソーダともいう。 無水物は立方晶系の逆蛍石型構造、格子定数は a.

新しい!!: 酸化還元電位と硫化ナトリウム · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 酸化還元電位と窒素 · 続きを見る »

紅色細菌

紅色細菌(こうしょくさいきん、purple bacteria)は、光合成細菌のうち酸素を発生せず、カロテノイドの蓄積により赤色ないし褐色を呈するものの総称である。広義には非光合成性で色調も異なる細菌を多数含む類縁の細菌群全てを紅色細菌と呼び、その中で光合成能を有するものもしくは光合成器官や光合成色素を有するものだけを紅色光合成細菌として区別する場合がある。狭義の紅色細菌は、栄養的分類の観点からさらに紅色硫黄細菌と紅色非硫黄細菌とに区分され、一般的にこれらは分けて論じられる。 本項では主に狭義の紅色細菌(紅色光合成細菌)について述べる。広義の紅色細菌についてはプロテオバクテリアを、また紅色硫黄細菌については紅色硫黄細菌の項も参照のこと。 具体的な紅色細菌の例として、Rhodobacter sphaeroidesやBlastochloris viridis(旧名Rhodopseudomonas viridis)などがあげられる。.

新しい!!: 酸化還元電位と紅色細菌 · 続きを見る »

緩衝液

緩衝液(かんしょうえき、)は、緩衝作用のある溶液であり、弱酸とその共役塩基(英語版)や弱塩基とその共役酸を混合したものである。通常、単に緩衝液とだけいう場合は、水素イオン濃度に対する緩衝作用のある溶液を指し、本項目でも特別な注意書きがない場合にはこの意味の緩衝液について記述する。緩衝液は少量の酸や塩基を加えたり、多少濃度が変化したりしても pH が大きく変化しないようにした溶液のことである。 弱酸とその塩などを溶かした水溶液を指すことが多い。微生物の培養や化学物質の保存・分離などに用いられる。.

新しい!!: 酸化還元電位と緩衝液 · 続きを見る »

生化学

生化学(せいかがく、英語:biochemistry)は生命現象を化学的に研究する生化学辞典第2版、p.713 【生化学】生物学または化学の一分野である。生物化学(せいぶつかがく、biological chemistry)とも言う(若干生化学と生物化学で指す意味や範囲が違うことがある。生物化学は化学の一分野として生体物質を扱う学問を指すことが多い)。生物を成り立たせている物質と、それが合成や分解を起こすしくみ、そしてそれぞれが生体システムの中で持つ役割の究明を目的とする。.

新しい!!: 酸化還元電位と生化学 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: 酸化還元電位と熱力学温度 · 続きを見る »

解糖系

解糖系 解糖系(かいとうけい、Glycolysis)とは、生体内に存在する生化学反応経路の名称であり、グルコースをピルビン酸などの有機酸に分解(異化)し、グルコースに含まれる高い結合エネルギーを生物が使いやすい形に変換していくための代謝過程である。ほとんど全ての生物が解糖系を持っており、もっとも原始的な代謝系とされている。嫌気状態(けんきじょうたい、無酸素状態のこと)でも起こりうる代謝系の代表的なものである一方で、得られる還元力やピルビン酸が電子伝達系やクエン酸回路に受け渡されることで好気呼吸の一部としても機能する。.

新しい!!: 酸化還元電位と解糖系 · 続きを見る »

還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

新しい!!: 酸化還元電位と還元 · 続きを見る »

脱窒

窒素循環のモデル図 脱窒(だっちつ)とは、窒素化合物を分子状窒素として大気中へ放散させる作用または工程を指す。窒素循環の最終段階であり、主に微生物によって行われる西尾隆、 日本土壌肥料学雑誌 Vol.65 (1994) No.4 p.463-471, 。 無機窒素塩類を化学肥料として多用する近代農業のもとでは、作物の同化作用へ吸収されず残留したそれら塩類が地下水へ侵入・汚染することを制限する役割を果たしている。.

新しい!!: 酸化還元電位と脱窒 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: 酸化還元電位と酸化 · 続きを見る »

酸化還元反応

酸化還元反応(さんかかんげんはんのう)とは化学反応のうち、反応物から生成物が生ずる過程において、原子やイオンあるいは化合物間で電子の授受がある反応のことである。英語表記の Reduction / Oxidation から、レドックス (Redox) というかばん語も一般的に使われている。 酸化還元反応ではある物質の酸化プロセスと別の物質の還元プロセスが必ず並行して進行する。言い換えれば、一組の酸化される物質と還元される物質があってはじめて酸化還元反応が完結する。したがって、反応を考えている人の目的や立場の違いによって単に「酸化反応」あるいは「還元反応」と呼称されている反応はいずれも酸化還元反応と呼ぶべきものである。酸化還元反応式は、そのとき酸化される物質が電子を放出する反応と、還元される物質が電子を受け取る反応に分けて記述する、すなわち電子を含む2つの反応式に分割して記述することができる。このように電子を含んで式化したものを半反応式、半電池反応式、あるいは半電池式と呼ぶ。.

新しい!!: 酸化還元電位と酸化還元反応 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 酸化還元電位と酸素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

新しい!!: 酸化還元電位と鉄 · 続きを見る »

鉄・硫黄クラスター

鉄・硫黄クラスター(てつ・いおうクラスター、en:Iron-sulfur cluster)は鉄と硫黄からなるクラスターである。 鉄・硫黄クラスターは鉄・硫黄タンパク質が持つ生物学的機能を調べるなかでしばしば研究の対象とされてきた。有機金属化学の分野の中で、多くの鉄・硫黄クラスターが生物が持つクラスターの合成類似体として、あるいはその前駆体として知られている。(図参照).

新しい!!: 酸化還元電位と鉄・硫黄クラスター · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 酸化還元電位と電子 · 続きを見る »

電子伝達系

真核生物では、ミトコンドリアの電子伝達鎖は酸化的リン酸化の場となる。クエン酸回路で作られたNADHとコハク酸は酸化され、ATP合成酵素にエネルギーを与える。 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。.

新しい!!: 酸化還元電位と電子伝達系 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: 酸化還元電位と電位 · 続きを見る »

標準電極電位

標準電極電位(ひょうじゅんでんきょくでんい、standard electrode potential)は、ある電気化学反応(電極反応)について、標準状態(反応に関与する全ての化学種の活量が1かつ平衡状態となっている時の電極電位である。標準電位(standard potential)、標準還元電位(standard reduction potential)とも呼ばれる。.

新しい!!: 酸化還元電位と標準電極電位 · 続きを見る »

水素イオン指数

水素イオン指数(すいそイオンしすう、Wasserstoffionenexponent)とは、溶液の液性(酸性・アルカリ性の程度)を表す物理量で、記号pHで表す。水素イオン濃度指数または水素指数とも呼ばれる。1909年にデンマークの生化学者セレン・セーレンセンが提案した『化学の原典』 p. 69.

新しい!!: 酸化還元電位と水素イオン指数 · 続きを見る »

気体定数

気体定数(きたいていすう、)は、理想気体の状態方程式における係数として導入される物理定数であるアトキンス『物理化学』 p.20。理想気体だけでなく、実在気体や液体における量を表すときにも用いられる。 気体定数の測定法としては、低圧の領域で状態方程式から計算する方法もあるが、低圧で音速測定を行い、そこから求めるほうが正確に得られる。 モル気体定数(モルきたいていすう、)の値は である(2014CODATA推奨値)。 気体定数は、ボルツマン定数 のアボガドロ定数 倍である。したがって、2019年5月20日に施行予定の国際単位系(SI)の改定(新しいSIの定義)によって、ボルツマン定数もアボガドロ定数も定義定数となるので、気体定数も定義定数となり となる。.

新しい!!: 酸化還元電位と気体定数 · 続きを見る »

ここにリダイレクトされます:

ORPレドックス電位還元電位酸化電位

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »