ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

NCSX

索引 NCSX

NCSXはプリンストンプラズマ物理研究所の行っているプラズマ閉じ込め実験。正式名称はNational Compact Stellarator Experiment (国立小型ヘリカル実験)。NCSXは小型化に繋がる原子炉容器向けの最適形状を発見するために超並列マシンによって設計された磁石とレイアウトを利用している。予算上の制約を満たせなかったために2008年5月22日に終了した。 NCSXはヘリカル型装置の構想の一種であり、典型的なヘリカル型装置よりも低いアスペクト比であるとされる。正しく設計されたヘリカル型装置の利点の一つは閉じ込められたプラズマが定常磁場が加えられた時に受動的に安定する点であり、トカマク型装置は一定の磁場下であってもプラズマの安定化に能動的制御を必要とするのと対照的である。 補助熱源として最大12MWがNCSXチャンバーに利用可能であり、6MWは正接、残りの6MWはラジオ波の熱から構成される。将来の設計の繰り返しによって電子サイクロトロン熱の3MWまでが利用可能とされた。組み立て許容誤差はきわめて小さく、レーザー測定器や写真測量装置等の最高水準の計量学システムの利用を必要とした。許容誤差の要件で組み立てを完成させるためには、さらに3年間延長し、5000万$の追加予算が必要とされた。ヘリカル装置の部品は3次元レーザースキャンで測定され、製造工程の複数の段階でモデル設計のために検査された。.

7 関係: トカマク型ヘリカル型プラズマ物理アメリカ合衆国ドルアスペクト比写真測量法超並列マシン

トカマク型

トカマク型磁気閉じ込め方式 トカマク型(トカマクがた、Tokamak)とは、高温核融合炉の実現に向けた技術の1つで、超高温のプラズマを閉じこめる磁気閉じ込め方式の1つである。 将来の核融合炉に最も有力とされるプラズマ閉じ込めの方式の1つで、これまで製作された多くの核融合実験装置や現在計画中の国際熱核融合実験炉ITER(イーター)でも採用されている。磁気閉じ込め方式には、トカマク型の他に、ステラレータ型又はヘリカル型と呼ばれる形式もある。 本項ではトカマク型磁気閉じ込めの特徴的な要素についてのみ説明する。核融合炉の実現に関わるその他の要素については核融合炉などを参照のこと。.

新しい!!: NCSXとトカマク型 · 続きを見る »

ヘリカル型

ヘリカル型とは、核融合炉においてトカマク型と並べられるトーラス型の磁場閉じ込め方式の1種で、ねじれたコイルを周回させて閉じ込め磁場を作ることが特徴である。現代では、ステラレータ方式(主に欧米)、およびヘリオトロン方式(主に日本)の総称として用いられている。.

新しい!!: NCSXとヘリカル型 · 続きを見る »

プラズマ物理

プラズマ物理(プラズマぶつり)では、プラズマを理解するのに有用なもろもろの物理的概念を解説する。プラズマの全般的解説については項目プラズマを参照。.

新しい!!: NCSXとプラズマ物理 · 続きを見る »

アメリカ合衆国ドル

アメリカ合衆国ドル(アメリカがっしゅうこくドル、United States Dollar)は、アメリカ合衆国の公式通貨である。通称としてUSドル、米ドル、アメリカ・ドルなどが使われる。アメリカ以外のいくつかの国や地域で公式の通貨として採用されているほか、その信頼性から、国際決済通貨や基軸通貨として、世界で最も多く利用されている通貨である。 通貨単位の呼称としての「ドル」は、カナダドル、香港ドル、シンガポールドル、オーストラリア・ドル、ニュージーランド・ドル、ジンバブエ・ドルなどようにいくつかの国や地域で用いられている呼称であるが、単に「ドル」と言った場合は『アメリカ合衆国ドル』を指す。.

新しい!!: NCSXとアメリカ合衆国ドル · 続きを見る »

アスペクト比

アスペクト比(アスペクトひ、 )は、矩形における長辺と短辺の比率。 タイヤのような3次元形状の中の2次元平面(トーラス面)、あるいはロッドの長さや直径のようなものにも適用される。使用される代表的な物は、映像、紙、航空機や鳥の翼の形状、微細加工における穴径と深さなどである。長辺:短辺(横縦比)または短辺:長辺(縦横比)で表されるが、ここでは長辺:短辺で統一する。なお、テレビやデジタルビデオ関係では長辺:短辺(横縦比)で表されることが多いが、映画界では伝統的に短辺:長辺(縦横比)で表されることが多い。.

新しい!!: NCSXとアスペクト比 · 続きを見る »

写真測量法

写真測量法 (しゃしんそくりょうほう Photogrammetry) とは、写真画像から対象物の幾何学特性を得る方法である。写真測量法の歴史は現代写真技術と同じくらい古く、起源は19世紀半ばに遡る。 写真測量の最も単純な例として、写真画像面に平行な平面上に存在する2点間の距離を求める場合があげられる。写真画像の縮尺が分かっていれば、画像上の距離を測定し、実際の距離を縮尺から逆算して求めることができる。 この技術の高度な応用例であるステレオ写真測量を使うと、対象物体上に存在する任意の点の三次元座標を得られる。この場合は、2つ以上の異なる位置から撮影した画像を利用して測定が行われる。まず、別々の位置から撮影した写真に写っている共通の点を識別する。次に、それぞれの写真の撮影時のカメラ位置から共通点への視線(または光線)が交わる点を求め、それを頼りに対象点の3次元座標を算出する。さらに高度な例として、測定対象に関する先験的な情報(例えば対象が対称図形であるなど)を利用して、1箇所からの撮影だけで三次元座標を得る手法もある。 写真測量は、地形図、建築、工学、製造、品質管理、警察の捜査、地質学など、さまざまな分野で利用されている。写真測量を使えば、考古学者は大規模で複雑な遺跡の全体図を容易に作成することができ、気象学者は実際の気象データを測定できなくとも竜巻の風速を算出することができる。また、実写とコンピュータ生成画像を組み合わせた映画のポストプロダクションにも写真測量が利用されている。この技術を利用した映画の例には『ファイト・クラブ』(DVDの特典映像で詳細な説明がある)がある。 通常、写真測量のアルゴリズムには、問題の解法として誤差の二乗和を最小化する最小二乗法が用いられる。この最小化をともいい、を使用して計算することが多い。.

新しい!!: NCSXと写真測量法 · 続きを見る »

超並列マシン

超並列マシン (ちょうへいれつマシン、Massively parallel machine) は1990年代から台頭してきた、並列計算機の中で規模の大きなもの(CPU数の多いもの)を言う。大規模クラスターマシン、大規模ワークステーションクラスター、地球シミュレーターなども超並列マシンの範疇に入れることができる。時代と共に並列度は大きくなり、CPU性能は向上するため、何個以上のCPU数(或いは性能)で超並列であるというはっきりとした定義はない。 超並列マシンは分散メモリ型のコンピュータシステムであり、多数のノードから構成され、各ノードは基本的に独立したコンピュータとなっている。本来の超並列マシンはnCUBEやコネクションマシンなどのように、ほとんどのノードがCPUとメモリとノード間接続用の通信ポートのみで構成されるものであった。ノード間通信にはMPIのような標準的なプロトコルを使用してメッセージをやり取りする。2005年現在のスーパーコンピュータはほとんどが超並列マシンである。超並列マシンの性能は、実行しようとするアプリケーションの並列性と、スレッド間の通信量に左右される。アプリケーションの並列性が高ければ多くのノードに展開して並列実行できるため、性能向上が期待できる。しかし、共有メモリ型と異なり、あるスレッドの実行結果をメモリに置くだけでは他のスレッドからは見えないため、通信が必要となる。したがって、計算途中に他のスレッドの結果を待ち合わせなければならないようなアプリケーションではノード数に比例した性能向上は期待できない。超並列マシンでの計算性能の向上は研究の活発な領域である。.

新しい!!: NCSXと超並列マシン · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »