ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

M/M/1 待ち行列

索引 M/M/1 待ち行列

M/M/1 待ち行列ノード M/M/1 待ち行列 は確率論の一分野である待ち行列理論の用語で、1列に並んだ客や要求を1つの窓口やサーバが処理する待ち行列で、待ち行列に到着する客や要求がに従い、窓口やサーバがこれらを処理する時間が指数分布に従うものを指す。なお、新しく到着した客や要求は待ち行列の一番後ろに並び、窓口やサーバは待ち行列の先頭から順に客や要求を処理するものとする(方式)。また待ち行列のバッファは無限に大きいものとする(すなわち、客が待つ部屋は無限に広く、待ち行列の長さに限界がないということ)。 M/M/1待ち行列において、待ち行列が増加する要因(=客や要求の到着)がポアソン過程に従うという事は、待ち行列の長さが1伸びるのに要する時間が無記憶かつ指数分布に従うことを意味するので、M/M/1待ち行列では、待ち行列の長さが増加する場合も減少する(=窓口やサーバが客や要求を処理する)場合も指数分布に従う。 またこのことから待ち行列の長さの増加および減少がいずれも無記憶のマルコフ過程に従うので、無記憶のMemoryless もしくはマルコフの Markovianとサーバの台数1とあわせて、ケンドールの記号から「M/M/1」待ち行列と名づけられた。 M/M/1待ち行列は最も基礎的な待ち行列モデルであり、このモデルからはいくつものとしての魅力的な研究対象を得ることができる。このモデルを複数のサーバーに拡張したものがである。.

14 関係: 単調写像定常過程幾何分布待ち行列理論マルコフ過程ラプラス変換リトルの法則ベッセル関数ケンドールの記号状態空間確率密度関数確率論確率質量関数指数分布

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: M/M/1 待ち行列と単調写像 · 続きを見る »

定常過程

定常過程(ていじょうかてい、Stationary process)とは、時間や位置によって確率分布が変化しない確率過程を指す。このため、平均や分散も(もしあれば)時間や位置によって変化しない。 例えば、ホワイトノイズは定常的である。しかし、シンバルを鳴らしたときの音は定常的ではなく、時間と共に音が弱まっていく。 定常性(Stationarity)は時系列の解析でも重要であり、時系列データを定常的なものに変換することがよく行われる。例えば、経済的データは季節による変動があったり、価格レベルに依存する。ある定常過程と1つ以上の過程に傾向(トレンド)が認められるとき、これら過程を「傾向定常的; trend stationary」であるという。このようなデータから定常的成分だけを抜き出して分析することを「傾向除去; de-trending」と呼ぶ。 離散時間の定常過程で、標本値も離散的(とりうる値が N 個に限定されている)な場合をベルヌーイ系(Bernoulli scheme)と呼ぶ。N.

新しい!!: M/M/1 待ち行列と定常過程 · 続きを見る »

幾何分布

幾何分布(きかぶんぷ、geometric distribution)は、離散型確率分布で、次の2通りの定義がある。.

新しい!!: M/M/1 待ち行列と幾何分布 · 続きを見る »

待ち行列理論

待ち行列理論(まちぎょうれつりろん )とは、顧客がサービスを受けるために行列に並ぶような確率的に挙動するシステムの混雑現象を数理モデルを用いて解析することを目的とした理論である。応用数学のオペレーションズ・リサーチにおける分野の一つに数えられる。 電話交換機や情報ネットワーク、生産システム、空港や病院などの設計や性能評価に応用される。性能評価指標としては、待ち行列長・待ち時間・スループットなどが用いられる。応用の場では、システムの性能がある設計目標を満たすために必要な設計パラメータを決定する際に、その逆問題を提供できる。.

新しい!!: M/M/1 待ち行列と待ち行列理論 · 続きを見る »

マルコフ過程

マルコフ過程(マルコフかてい)とは、マルコフ性をもつ確率過程のことをいう。すなわち、未来の挙動が現在の値だけで決定され、過去の挙動と無関係であるという性質を持つ確率過程である。 このような過程は例えば、確率的にしか記述できない物理現象の時間発展の様子に見られる。なぜなら、粒子の将来の挙動は現在の挙動によってのみ決定されるが、この性質は系の粒子数が多くなり確率論的な解析を必要とする状態にも引き継がれるからである。 ロシア人数学者、アンドレイ・マルコフにちなんで命名されている。.

新しい!!: M/M/1 待ち行列とマルコフ過程 · 続きを見る »

ラプラス変換

関数解析学において、ラプラス変換(ラプラスへんかん、Laplace transform)とは、積分で定義される関数空間の間の写像(線型作用素)の一種。関数変換。 ラプラス変換の名はピエール=シモン・ラプラスにちなむ。 ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。1899年に電気技師であったオリヴァー・ヘヴィサイドが回路方程式を解くための実用的な演算子を経験則として考案して発表し、後に数学者がその演算子に対し厳密に理論的な裏付けを行った経緯がある。理論的な根拠が曖昧なままで発表されたため、この計算手法に対する懐疑的な声も多かった。この「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 従って、数学の中ではかなり応用寄りの分野である。ラプラス変換の理論は微分積分、線形代数、ベクトル解析、フーリエ解析、複素解析を基盤としているため、理解するためにはそれらの分野を習得するべきである。 これと類似の解法として、より数学的な側面から作られた演算子法がある。こちらは演算子の記号を多項式に見立て、代数的に変形し、公式に基づいて特解を求める方法である。.

新しい!!: M/M/1 待ち行列とラプラス変換 · 続きを見る »

リトルの法則

リトルの法則 (英:Little's law) あるいはリトルの定理(Little's theorem)とは、待ち行列理論において という法則である。 本法則は直感的には理にかなったものであるが、対象がどのような確率分布であってもこの振る舞いをするという点と、到着した顧客やサービスする顧客に基づいてどのようにスケジュールするかについて何の仮定も設けない点は特筆すべきである。 最初の証明は1961 年に当時ケース・ウェスタン・リザーブ大学にいたジョン・リトル(en)によって発表された。彼の法則はいかなるシステムにも適用でき、また特にシステム内のシステムに適用することができる。銀行では顧客の列や窓口の係が一つのサブシステムであり、リトルの法則はそのそれぞれについても、全体についても適用することができる。リトルの法則の必要条件は、系が安定していて割り込みがないということのみであり、またこの条件により開始時や終了時などの状態遷移を除外している。.

新しい!!: M/M/1 待ち行列とリトルの法則 · 続きを見る »

ベッセル関数

ベッセル関数(ベッセルかんすう、Bessel function)とは、最初にスイスの数学者ダニエル・ベルヌーイによって定義され、フリードリヒ・ヴィルヘルム・ベッセルにちなんで名づけられた関数。円筒関数と呼ばれることもある。以下に示す、ベッセルの微分方程式におけるy(x)の特殊解の1つである。 上の式において、\alphaは、任意の実数である(次数と呼ばれる)。\alphaが整数nに等しい場合がとくに重要である。 \alpha及び-\alphaはともに同一の微分方程式を与えるが、慣例としてこれら2つの異なる次数に対して異なるベッセル関数が定義される(例えば、\alphaの関数としてなるべく滑らかになるようにベッセル関数を定義する、など)。 そもそもベッセル関数は、惑星軌道の時間変化に関するケプラー方程式を、ベッセルが解析的に解いた際に導入された。.

新しい!!: M/M/1 待ち行列とベッセル関数 · 続きを見る »

ケンドールの記号

待ち行列理論において、ケンドールの記号(Kendall's notation、Kendall notation)とは、待ち行列モデルを説明および分類するのに使われる標準的な表現方法である。 1953年に、David George Kendallによって、列(キュー)の特徴を描写するための3要因が「A/B/C」の表現方法で提案された。これは最大6つの異なる要因を含ませることまで拡張できる。 この表現方法は、例えば現在待ち行列理論の分野で最も標準的な記法として使われている。.

新しい!!: M/M/1 待ち行列とケンドールの記号 · 続きを見る »

状態空間

態空間(じょうたいくうかん)は、何らかの状態をベクトル空間内のベクトルで現すこと。.

新しい!!: M/M/1 待ち行列と状態空間 · 続きを見る »

確率密度関数

率論において、確率密度関数(かくりつみつどかんすう、probability density function、PDF)とは連続確率変数がある値をとるという事象の相対尤度を記述する関数である。確率変数がある範囲の値をとる確率を、その範囲にわたって確率密度関数を積分することにより得ることができるよう定義される。例えば単変数の確率分布を平面上のグラフに表現して、x軸に“ある値”を、y軸に“相対尤度”を採った場合、求めたい範囲(x値)の下限値と上限値での垂直線と、変数グラフ曲線とy.

新しい!!: M/M/1 待ち行列と確率密度関数 · 続きを見る »

確率論

率論(かくりつろん、,, )とは、偶然現象に対して数学的な模型(モデル)を与え、解析する数学の一分野である。 もともとサイコロ賭博といった賭博の研究として始まった。現在でも保険や投資などの分野で基礎論として使われる。 なお、確率の計算を問題とする分野を指して「確率論」と呼ぶ用例もあるが、本稿では取り扱わない。.

新しい!!: M/M/1 待ち行列と確率論 · 続きを見る »

確率質量関数

率質量関数の例。全ての値は非負であり、その和は1になる。 確率論および統計学において、確率質量関数(probability mass function、PMF)とは、離散確率変数が“ある値”となる確率を与える関数である(単に確率関数と表されることもある)。 確率質量関数は離散確率分布について、定義域が離散的であるスカラー変数やとして定義される。 確率質量関数は、連続確率変数を採る確率密度関数 (PDF) とは異なり離散確率変数を採るので、PDFで確率を計算する際に範囲を積分しなければならないのに対して、PMFの計算では積分の必要はない。.

新しい!!: M/M/1 待ち行列と確率質量関数 · 続きを見る »

指数分布

記載なし。

新しい!!: M/M/1 待ち行列と指数分布 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »