ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

2の自然対数

索引 2の自然対数

2の自然対数(にのしぜんたいすう)は、自然対数関数 の での値であり、 と表記する。2の常用対数との混同を避けるため あるいは底を明記して とも書かれる。 は正の実数であり、その値は である。この数は無理数であるので数字の循環しない無限小数である。さらに超越数であるため、代数方程式の解にはならない。連分数表記では となる。また、この数は、核反応や化学反応において物質濃度の半減期を求める際に現れる数である。.

52 関係: 原子核反応半減期単調写像双曲線境界条件変数 (数学)実数小数常用対数交項級数二進対数代数方程式微分化学反応ペーター・グスタフ・ディリクレネイピア数リンデマンの定理テイラー展開初期値問題利子アーベルの連続性定理タンジェント数図形積分法符号級数約数無理数物質直線融資面積複利超越数近似関数自然対数速度速度定数連分数逆写像MathWorldWolfram Alpha極限正規数比例濃度指数関数...時間72の法則 インデックスを展開 (2 もっと) »

原子核反応

原子核物理学における原子核反応(げんしかくはんのう、nuclear reaction)または核反応とは、入射粒子が標的核(原子核)と衝突して生じる現象の総称を言う。大別して、吸収、核分裂、散乱の三つがあるが、その反応過程は多彩で統一的に記述する理論はまだない。 核反応においては、電荷、質量数、全エネルギー、全運動量が保存される。.

新しい!!: 2の自然対数と原子核反応 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: 2の自然対数と半減期 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 2の自然対数と単調写像 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 2の自然対数と双曲線 · 続きを見る »

境界条件

境界条件(きょうかいじょうけん、boundary condition)とは、境界値問題に課される拘束条件のこと。特に数学・物理学の用語としてよく用いられる。 境界条件は、境界値問題において興味のある解の探索領域とそれ以外の領域とを分けるために設定される。境界上では、境界内部で成り立つ方程式だけでは解の形を決定することができないので、補助的な条件を設定することで解を定める必要がある。この境界条件は多くの場合、対象とする境界値問題より一般的に成り立つであろう解の性質によって決定される。それは例えば境界上での解の値であったり、解の連続性や滑らかさであったりする。 時間的な境界条件の一つとして初期条件がある。時間発展を記述する方程式について、初期条件は応用上特別な意味を持つため、一般の境界条件とは分けて言及されることが多い。.

新しい!!: 2の自然対数と境界条件 · 続きを見る »

変数 (数学)

数学、特に解析学において変数(へんすう、variable)とは、未知あるいは不定の数・対象を表す文字記号のことである。代数学の文脈では不定元(ふていげん、indeterminate)の意味で変数と言うことがしばしばある。方程式において、特別な値をとることがあらかじめ期待されている場合、(みちすう)とも呼ばれる。また、記号論理学などでは(変数の表す対象が「数」に限らないという意味合いを込めて)変項(へんこう)とも言う。.

新しい!!: 2の自然対数と変数 (数学) · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 2の自然対数と実数 · 続きを見る »

小数

小数(しょうすう,decimal)とは、位取り記数法と小数点を用いて実数を表現するための表記法である。.

新しい!!: 2の自然対数と小数 · 続きを見る »

常用対数

常用対数(じょうようたいすう、common logarithm)は 10 を底とする対数のことである。数の表記で通常用いられる十進法表示と親和する。レベル表現の「ベル」などに使われている。.

新しい!!: 2の自然対数と常用対数 · 続きを見る »

交項級数

数学、とくに解析学における交項級数(こうこうきゅうすう)または交代級数(こうたいきゅうすう、alternating series)とは項の正負が交互に入れ替わる無限級数 である。同様の有限級数をしばしば交代和 (alternating sum) と呼ぶ。.

新しい!!: 2の自然対数と交項級数 · 続きを見る »

二進対数

二進対数 (にしんたいすう、binary logarithm)とは、2を底とする対数 のことである。これは、指数関数 の逆関数でもある。.

新しい!!: 2の自然対数と二進対数 · 続きを見る »

底(そこ、てい).

新しい!!: 2の自然対数と底 · 続きを見る »

代数方程式

数学において、代数方程式 (だいすうほうていしき、algebraic equation) とは(一般には多変数の)多項式を等号で結んだ形で表される方程式の総称で、式で表せば の形に表されるもののことである。言い換えれば、代数方程式は多項式の零点を記述する数学的対象である。.

新しい!!: 2の自然対数と代数方程式 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 2の自然対数と微分 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: 2の自然対数と化学反応 · 続きを見る »

ペーター・グスタフ・ディリクレ

ヨハン・ペーター・グスタフ・ルジューヌ・ディリクレ(Johann Peter Gustav Lejeune Dirichlet, 1805年2月13日 - 1859年5月5日)はドイツの数学者で、現代的形式の関数の定義を与えたことで知られている。.

新しい!!: 2の自然対数とペーター・グスタフ・ディリクレ · 続きを見る »

ネイピア数

1.

新しい!!: 2の自然対数とネイピア数 · 続きを見る »

リンデマンの定理

リンデマンの定理(リンデマンのていり、Lindemann's theorem)は、1882年にフェルディナント・フォン・リンデマンが証明した、超越数論における定理の一つである。この定理は、円周率やネイピア数などの数が超越数であることを内包する。1885年のカール・ワイエルシュトラスによる寄与を踏まえ、リンデマン.

新しい!!: 2の自然対数とリンデマンの定理 · 続きを見る »

テイラー展開

数学において、テイラー級数 (Taylor series) は関数のある一点での導関数たちの値から計算される項の無限和として関数を表したものである。そのような級数を得ることをテイラー展開という。 テイラー級数の概念はスコットランドの数学者ジェームズ・グレゴリーにより定式化され、フォーマルにはイギリスの数学者ブルック・テイラーによって1715年に導入された。0 を中心としたテイラー級数は、マクローリン級数 (Maclaurin series) とも呼ばれる。これはスコットランドの数学者コリン・マクローリンにちなんでおり、彼は18世紀にテイラー級数のこの特別な場合を積極的に活用した。 関数はそのテイラー級数の有限個の項を用いて近似することができる。テイラーの定理はそのような近似による誤差の定量的な評価を与える。テイラー級数の最初のいくつかの項として得られる多項式はと呼ばれる。関数のテイラー級数は、その関数のテイラー多項式で次数を増やした極限が存在すればその極限である。関数はそのテイラー級数がすべての点で収束するときでさえもテイラー級数に等しいとは限らない。開区間(あるいは複素平面の開円板)でテイラー級数に等しい関数はその区間上の解析関数と呼ばれる。.

新しい!!: 2の自然対数とテイラー展開 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: 2の自然対数と初期値問題 · 続きを見る »

利子

利子(りし、interest)とは、貸借した金銭などに対して、ある一定利率で支払われる対価。 利息(りそく)と利子は通常同じ意味で使われるが、借りた場合に支払うものを利子、貸した場合に受け取るものを利息と使い分けることがある。また、銀行預金では利息と呼ぶ(ゆうちょ銀行では利子と呼ぶ)。法律用語としては利息を用いるのが通常である。 米の貸し借りの対価として支払われる「利子米(利米)」のように利子は金銭以外で支払われる場合もある。このような実物を対価とする利子を実物利子、金銭を対価とする利子を貨幣利子あるいは金利と呼ぶ。.

新しい!!: 2の自然対数と利子 · 続きを見る »

アーベルの連続性定理

アーベルの連続性定理とは、収束半径が1の冪級数が収束円周上の点において連続であるための十分条件を与える定理である。冪級数は収束円板の内部で広義一様に絶対収束するが、収束円上の一般の点での挙動はわからない。この定理はそこでの連続性を保証している。数学者ニールス・アーベルにちなんで名付けられた。.

新しい!!: 2の自然対数とアーベルの連続性定理 · 続きを見る »

タンジェント数

タンジェント数(タンジェントすう、tangent number)とは、正接関数 \tan z を母関数とする数列、もしくはそれに属する個々の数のことである。すなわち、以下のテイラー展開で定義される整数列 T_k として定義される。 タンジェント数はすべて整数である。 しかも、偶数項はすべて0、奇数項は T1.

新しい!!: 2の自然対数とタンジェント数 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: 2の自然対数と図形 · 続きを見る »

積(せき)とは数学の乗法の結果を指す。平面や物体の広さや大きさは乗法によって得られるため、転じて広さや大きさという意味も持つ。 同列の言葉として加法の結果を示す和、減法の結果を示す差、除法の結果を示す商があり、まとめて和差積商と呼ぶ。 数学において 1 との乗算は演算前と演算後で値に変化が見られないことから省略される。そのため全ての実数が積であるともいうことが可能である。.

新しい!!: 2の自然対数と積 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 2の自然対数と積分法 · 続きを見る »

符号

モールス符号 符号理論において、符号(ふごう)またはコード(code)とは、シンボルの集合S, Xがあるとき、Sに含まれるシンボルのあらゆる系列から、Xに含まれるシンボルの系列への写像のことである。Sを情報源アルファベット、Xを符号アルファベットという。すなわち符号とは、情報の断片(例えば、文字、語、句、ジェスチャーなど)を別の形態や表現へ(ある記号から別の記号へ)変換する規則であり、変換先は必ずしも同種のものとは限らない。 コミュニケーションや情報処理において符号化(エンコード)とは、情報源の情報を伝達のためのシンボル列に変換する処理である。復号(デコード)はその逆処理であり、符号化されたシンボル列を受信者が理解可能な情報に変換して戻してやることを指す。 符号化が行われるのは、通常の読み書きや会話などの言語によるコミュニケーションが不可能な場面でコミュニケーションを可能にするためである。例えば、手旗信号や腕木通信の符号も個々の文字や数字を表していることが多い。遠隔にいる人がその手旗や腕木を見て、本来の言葉などに戻して解釈することになる。.

新しい!!: 2の自然対数と符号 · 続きを見る »

級数

数学における級数 (きゅうすう、series) とは、ひと口に言えば数や関数など互いに足すことのできる数学的対象の列について考えられる無限項の和のことである。ただし「無限の項の総和」が何を表しているのかということはしばしば解析学の言葉を用いて様々な場合に意味を与える(#級数の収束性の節を参照)ことができるが、そのようなことができない「発散する級数」もあれば、級数自体を新たな形式的対象としてとらえることもある。小さくなっていく実数を項とする級数の収束性については様々な判定条件が与えられている。 級数を表す記法として、和記号 を用いた表現 や三点リーダ を用いた表現 などがある。 有限個の項以外は とすることで有限個の対象の和を表すこともでき、無限項の和であることを特に強調する場合には無限級数とも言う。無限の項の和の形に表された級数が何を表しているかということは一見必ずしも明らかではないため、何らかの意味付けを与えなければならない。最もよく採用される理解の方法は、有限個の項の和が収束する先を無限級数の値とすることである。例えば、 より となる。このほかに、解析接続などの手法により、みかけ上発散している級数に対して のような等式が意味付けされることもある。.

新しい!!: 2の自然対数と級数 · 続きを見る »

約数

数学において、整数 の約数(やくすう、divisor)とは、 を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、 を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、factor)が使われることが多い。 整数 が整数 の約数であることを、記号 | を用いて と表す。 約数の定義を式で表すと、「整数 が の約数であるとは、ある整数 をとると が成立することである」であるが、条件「」を外すこともある(その場合、 のとき も約数になる)。 自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。.

新しい!!: 2の自然対数と約数 · 続きを見る »

無理数

無理数(むりすう、 irrational number)とは、有理数ではない実数、つまり分子・分母ともに整数である分数(比.

新しい!!: 2の自然対数と無理数 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: 2の自然対数と物質 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 2の自然対数と直線 · 続きを見る »

融資

融資(ゆうし、loan)とは、資金を融通すること。つまりお金を必要とする者に貸すこと。特に消費者金融などを中心として片仮名で「ローン」とも呼ばれる。.

新しい!!: 2の自然対数と融資 · 続きを見る »

面積

面積(めんせき)とは、平面内の、あるいは曲面内の図形の大きさ、広さ、の量である。立体物の表面の面積の合計を特に表面積(ひょうめんせき)と呼ぶ。.

新しい!!: 2の自然対数と面積 · 続きを見る »

複利

複利(ふくり)とは、複利法によって計算された利子のこと。複利法とは、元金(がんきん)によって生じた利子を次期の元金に組み入れる方式であり、元金だけでなく利子にも次期の利子がつく。したがって、各期の利子が次第に増加していく。投資や借金などでは、雪だるま式に利子が増えていくことになる。重利(じゅうり)とも。.

新しい!!: 2の自然対数と複利 · 続きを見る »

超越数

超越数(ちょうえつすう、transcendental number)とは、代数的数でない数、すなわちどんな有理係数の代数方程式 のにもならないような複素数のことである。有理数は一次方程式の解であるから、超越的な実数はすべて無理数になるが、無理数 2 は の解であるから、逆は成り立たない。超越数論は、超越数について研究する数学の分野で、与えられた数の超越性の判定などが主な問題である。 よく知られた超越数にネイピア数(自然対数の底)や円周率がある。ただし超越性が示されている実数のクラスはほんの僅かであり、与えられた数が超越数であるかどうかを調べるのは難しい問題だとされている。例えば、ネイピア数と円周率はともに超越数であるにもかかわらず、それをただ足しただけの すら超越数かどうか分かっていない。 代数学の標準的な記号 \mathbb で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って と書けば、超越数全体の集合は となる。 なお、本稿では を自然対数とする。.

新しい!!: 2の自然対数と超越数 · 続きを見る »

近似

近似(きんじ、approximation)とは、数学や物理学において、複雑な対象の解析を容易にするため、細部を無視して、対象を単純化する行為、またはその方法。近似された対象のより単純な像は、近似モデルと呼ばれる。 単純化は解析の有効性を失わない範囲内で行われなければならない。解析の内容にそぐわないほど、過度に単純化されたモデルにもとづいた解析は、近似モデルの適用限界を見誤った行為であり、誤った解析結果をもたらす。しかしながら、ある近似モデルが、どこまで有効性を持つのか、すなわち適用限界がどこにあるのかは、実際にそのモデルに基づいた解析を行ってみなければ分からないことが多い。.

新しい!!: 2の自然対数と近似 · 続きを見る »

関数

関数(かんすう)、函数.

新しい!!: 2の自然対数と関数 · 続きを見る »

自然対数

実解析において実数の自然対数(しぜんたいすう、natural logarithm)は、超越的無理数であるネイピアの定数 を底とする対数を言う。 の自然対数を や、より一般に あるいは単に(底を暗に伏せて) などと書く。 通常の函数の記法に則って引数を指示する丸括弧を明示的に付けて、 や などのように書いてもよい 定義により、 の自然対数とは の肩にそれを載せた冪が 自身に一致するような冪指数のことに他ならない。例えば、 となることは となることを理由とする。特に の自然対数は であり、 の自然対数は である。 自然対数は、任意の正数 に対して 逆数函数 の から までの間のグラフの下にある面積( と の成立を意味する。 他の任意の対数がそうであるように、自然対数は なる意味で乗法を加法へ写す。これにより自然対数函数は正の実数の乗法群 から実数の加法群 への写像 として 群の準同型になる。 以外にも、任意の正数 に対して、それを底とする対数を定義することができるが、そのような対数は自然対数の定数倍として得ることができる(例えば二進対数は自然対数の 倍である)し、通常はそうして自然対数から定義される。対数は未知の量がほかの適当な量の冪と見なされる問題を解く際に有用で、例えば指数函数的減衰問題における減衰定数としての半減期を求めるときなどに利用できる。このように対数は、数学や自然科学の多くの分野において重要であり、また金融経済において複利を含む問題にも利用できる。 リンデマン–ヴァイアシュトラスの定理により、 でない任意の(正の)代数的数に対してその自然対数は超越数となる。.

新しい!!: 2の自然対数と自然対数 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 2の自然対数と速度 · 続きを見る »

速度定数

速度定数(そくどていすう)は化学反応において生成物または反応物が増減する速さを表す量である。 反応速度に関する全般的な理論については反応速度論を、定式化の詳細は反応速度を参照のこと。.

新しい!!: 2の自然対数と速度定数 · 続きを見る »

連分数

連分数(れんぶんすう、)とは、分母に更に分数が含まれているような分数のことを指す。分子が全て 1 である場合には特に単純連分数または正則連分数()ということがある。単に連分数といった場合、正則連分数を指す場合が多い。具体的には次のような形である。 ここで a は整数、それ以外の a は正の整数である。正則連分数は、最大公約数を求めるユークリッドの互除法から自然に生じるものであり、古来からペル方程式の解法にも利用された。 連分数を式で表す際には次のような書き方もある。 または また、極限の概念により、分数を無限に連ねたものも考えられる。 二次無理数(整数係数二次方程式の根である無理数)の正則連分数展開は必ず循環することが知られている。逆に、正則連分数展開が循環する数は二次無理数である。.

新しい!!: 2の自然対数と連分数 · 続きを見る »

逆写像

数学における逆写像(ぎゃくしゃぞう、inverse mapping)は一口に言えば写像の与える元の対応関係を「反対」にして得られる写像である。すなわち、写像 が を に写すならば、 の逆写像は を に写し戻す。 函数と呼ばれる種類の写像の逆写像は、逆函数 (inverse function) と呼ばれる。.

新しい!!: 2の自然対数と逆写像 · 続きを見る »

MathWorld

MathWorldはウルフラム・リサーチ社が運営している数学の解説のウェブサイト。.

新しい!!: 2の自然対数とMathWorld · 続きを見る »

Wolfram Alpha

Wolfram Alpha(WolframAlphaともWolfram|Alphaとも表記される)はウルフラム・リサーチが開発した質問応答システム。事実についての質問に対して、構造化されたデータを使って計算し、直接答えを返すオンラインサービスである。他の検索エンジンのように、答えを含んでいる可能性のあるドキュメントやウェブページのリストを返すわけではない。このサービスは2009年3月に英国人科学者スティーブン・ウルフラムが発表し、同年5月15日に公開された。また、2018年6月18日には日本語版のWolfram Alphaも公開された。現時点では日本語に対応しているのは数学関連のクエリのみであるが、「5個のボールの並べ方は何通りあるか」「ニュートン法を使ってx cos x.

新しい!!: 2の自然対数とWolfram Alpha · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 2の自然対数と極限 · 続きを見る »

正規数

数学における正規数(せいきすう、normal number)とは、無限小数表示において数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質を持つ実数である。より正確な定義については「定義」の節を参照のこと。 ''r'' 進法での表示についてこの性質を持つ数を r 進正規数という。単に正規数と述べた場合は、2 以上の任意の整数 r に対して r 進正規数であることを意味する。 一般論として「ほとんど全ての」実数が正規数であることが知られているが、その証明は構成的でないため、正規数であることが判明している具体的な数は非常に限られている。例えば、2の平方根、円周率、ネイピア数はそれぞれ正規数だと信じられているが、その通りか否かは未だ謎である。.

新しい!!: 2の自然対数と正規数 · 続きを見る »

比例

比例(ひれい、proportionality)とは、変数を用いて書かれる二つの量に対し一方が他方の定数倍であるような関係の事である。.

新しい!!: 2の自然対数と比例 · 続きを見る »

濃度

濃度(のうど)は、従来、「溶液中の溶質の割合を濃度という、いろいろな表し方がある。質量パーセント濃度、モル濃度等」(日本化学会編 第2版標準化学用語辞典)と定義されている。しかし、濃度をより狭く「特に混合物中の物質を対象に、量を全体積で除した商を示すための量の名称に追加する用語」(日本工業規格(JIS))『JISハンドブック 49 化学分析』日本規格協会;2008年と定義している場合がある。 後者に従えば「質量モル濃度」と訳されているMolarityは「濃度」ではない。しかし、MolarityやMolalityにそれぞれ「質量モル濃度」「重量モル濃度」等「~濃度」以外の訳語は見られない。.

新しい!!: 2の自然対数と濃度 · 続きを見る »

指数関数

実解析における指数関数(しすうかんすう、exponential function)は、冪における指数 を変数として、その定義域を主に実数の全体へ拡張して定義される初等超越関数の一種である。対数関数の逆関数であるため、逆対数 と呼ばれることもある。自然科学において、指数関数は量の増加度に関する数学的な記述を与えるものとして用いられる(や指数関数的減衰の項を参照)。 一般に、 かつ なる定数 に関して、(主に実数の上を亙る)変数 を へ送る関数は、「a を'''底'''とする指数函数」と呼ばれる。「指数関数」との名称は、与えられた底に関して冪指数を変数とする関数であることを示唆するものであり、冪指数を固定して底を独立変数とする冪関数とは対照的である。 しばしば、より狭義の関数を意図して単に「指数関数」と呼ぶこともある。そのような標準的な (the) 指数関数(あるいはより明示的に「自然指数関数」)はネイピア数 を底とする関数 である。これを のようにも書く。この関数は、導関数が自分自身に一致するなど、他の指数関数と比べて著しい性質を持つ。底 を他の底 に取り換えるには自然対数 を用いて、等式 を適用すればよいから、以下本項では主に自然指数関数について記述し、多くの場合「指数関数」は自然指数関数の意味で用いる。.

新しい!!: 2の自然対数と指数関数 · 続きを見る »

時間

人類にとって、もともとは太陽や月の動きが時間そのものであった。 アイ・ハヌム(紀元前4世紀~紀元前1世紀の古代都市)で使われていた日時計。人々は日時計の時間で生きていた。 砂時計で砂の流れを利用して時間を計ることも行われるようになった。また砂時計は、現在というものが未来と過去の間にあることを象徴している。くびれた部分(現在)を見つめる。すると時間というのは上(未来)から流れてきて下(過去)へと流れてゆく流れ、と感じられることになる。 時間(じかん)は、出来事や変化を認識するための基礎的な概念である。芸術、哲学、自然科学、心理学などの重要なテーマとなっている。それぞれの分野で異なった定義がなされる。.

新しい!!: 2の自然対数と時間 · 続きを見る »

72の法則

72の法則(72のほうそく)とは、資産運用において元本が2倍になるような年利と年数とが簡易に求められる法則である。.

新しい!!: 2の自然対数と72の法則 · 続きを見る »

ここにリダイレクトされます:

Ln2Log2

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »