ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

標準数

索引 標準数

標準数.

23 関係: 半導体受動素子対数工業規格トランジスタフランスベンフォードの法則コンデンサシャルル・ルナール国際電気標準会議国際標準化機構白銀比音階表面粗さ製品誤差部分集合抵抗器標準数気球温度日本工業規格数列

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: 標準数と半導体 · 続きを見る »

受動素子

受動素子(じゅどうそし、Passive element、Passive component)は、供給された電力を消費・蓄積・放出する素子で、増幅・整流などの能動動作を行わないものを言う。 一方、真空管、継電器(リレー)やトランジスタなど入力信号として小さな電力、電圧または電流を入れて、大きな出力信号として電力、電圧または電流の変化を得られる素子は能動素子(のうどうそし、Active element、Active component)と呼ばれ、その入力と出力の比率を利得という。 受動素子と電源とで構成された電気回路を受動回路という。.

新しい!!: 標準数と受動素子 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: 標準数と対数 · 続きを見る »

工業規格

工業規格(こうぎょうきかく)とは、工業分野における標準化を進めるため制定する「取決め(標準規格)」のこと。 コンピューターと通信の規格については、標準化団体も参照のこと。.

新しい!!: 標準数と工業規格 · 続きを見る »

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

新しい!!: 標準数とトランジスタ · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: 標準数とフランス · 続きを見る »

ベンフォードの法則

対数スケールのグラフ、この数直線上にランダムに点を取ると、その地点が表す数値の最初の桁が1になる確率がおおよそ30 パーセントである。 ベンフォードの法則(ベンフォードのほうそく、)とは、自然界に出てくる多くの(全てのではない)数値の最初の桁の分布が、一様ではなく、ある特定の分布になっている、という法則である。この法則によれば、最初の桁が1である確率はほぼ3分の1にも達し、大きな数値ほど最初の桁に現れる確率は小さくなり、9になると最初の桁に現れる確率は20分の1よりも小さくなる。数理的には、数値が対数的に分布しているときは常に最初の桁の数値がこのような分布で出現する。以下に示したような理由により、自然界での測定結果はしばしば対数的に分布する。別の言い方でいえば、対数的な測定結果があらゆる場所に存在する。 この直感に反するような結果は、電気料金の請求書、住所の番地、株価、人口の数値、死亡率、川の長さ、物理・数学定数、冪乗則で表現されるような過程(自然界ではとても一般的なものである)など、様々な種類の数値の集合に適用できることがわかっている。この法則はその数値の基底によらず(十進法ではない場合でも)適用できるが、その場合1桁目の各数値の取る比率は変化する。 1938年にこの法則を提唱した物理学者、フランク・ベンフォード (Frank Benford) にちなんで名づけられている (入会が必要)。しかしながら、この法則はそれ以前、1881年にサイモン・ニューカムによって提示されていた (入会が必要)。 また、このような数ないし自然の性質を人工的工学的に反映させたものに「標準数」がある。.

新しい!!: 標準数とベンフォードの法則 · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

新しい!!: 標準数とコンデンサ · 続きを見る »

シャルル・ルナール

ャルル・ルナール フランス号 シャルル・ルナール(Charles Renard 、1847年12月23日 - 1905年4月5日)はフランスのエンジニアである。工学の分野での標準化に貢献し「標準数」のルナール数に名前が残っている。飛行船の開発に貢献した。 ヴォージュ県のDamblainに生まれた。シャレー・ムードンの軍用気球研究所で働き、後に所長になった。1870年に気球の多種多様なロープの太さの種類を減らすために、寸法の系列を定め、これはルナール数と呼ばれるようになった。1952年に国際規格ISO3に取り入れられた。 1877年、シャレー・ムードンに軍用気球研究所を設立した。これは世界最初の航空機の実験設備となった。1879年に飛行船の組み立てと収納をするために格納庫(Hangar Y )を建設した。 ルナールとアルチュール・クレブス(Arthur Krebs )は飛行船、「フランス号」(La France )を製作した。フランス号は電池を動力源とする電動機で駆動されるプロペラで飛行し、1884年8月9日世界初の周回飛行を行った。23分の飛行で約8kmの飛行が行われた。 ルナールは多くの発明を行い、その中にはエンジンの動力試験に用いられるルナール回転板の発明も含まれる。フランスの初期の航空機研究家フェルベール(Ferdinand Ferber )の研究に協力した。.

新しい!!: 標準数とシャルル・ルナール · 続きを見る »

国際電気標準会議

国際電気標準会議(こくさいでんきひょうじゅんかいぎ、International Electrotechnical Commission、IEC)は、電気工学、電子工学、および関連した技術を扱う国際的な標準化団体である。国際規格作成のための規則群(Directives)、規格適合(ISO/IEC 17000シリーズ)、IT技術(ISO/IEC JTC1)など一部は国際標準化機構(ISO)と共同で開発している。公用語は、英語とフランス語。.

新しい!!: 標準数と国際電気標準会議 · 続きを見る »

国際標準化機構

国際標準化機構(こくさいひょうじゅんかきこう、International Organization for Standardization)、略称 ISO(アイエスオー、イソ、アイソ)は、各国の国家標準化団体で構成される非政府組織である。 スイス・ジュネーヴに本部を置く、スイス民法による非営利法人である。1947年2月23日に設立された。国際的な標準である国際規格(IS: international standard)を策定している。 国際連合経済社会理事会に総合協議資格(general consultative status)を有する機関に認定された最初の組織の1つである。.

新しい!!: 標準数と国際標準化機構 · 続きを見る »

白銀比

白銀比(はくぎんひ)と呼ばれるものは以下の2つがあり、いずれも無理比である。.

新しい!!: 標準数と白銀比 · 続きを見る »

音階

音階(おんかい、scale:スケール)は、音を音高により昇順あるいは降順にならべたものである。 「音階」は西洋音楽の音楽理論用語Tonleiter, Skala(ドイツ語)gamma(イタリア語)gamme(フランス語)scale(英語)などの訳語として明治期に日本語に登場した。それまでの日本で使われていた音階に似た用語を探すと、雅楽や声明の世界において使われていた「五声・五音」「七声・七音」「調(西洋音楽で定義される『調』とは意味が違う)」などが挙げられる(更にこれらは中国音楽の音楽理論用語からきている)。したがって基本的には「音階」とは西洋音楽理論において定義されるそれ(音を高低の順番に並べたもの)である。 1オクターブに含まれる音の数によって五音音階、七音音階などと分ける事もある。.

新しい!!: 標準数と音階 · 続きを見る »

表面粗さ

表面粗さ(または単に粗さ、surface roughness)とは表面性状の尺度の一つ。物体の表面形状を理想表面と比べたとき、鉛直方向の偏差がどれだけあるかで計られる。偏差が全体に大きければ表面は粗く、小さければ滑らかである。通常、粗さとは測定された表面形状のうち短波長で空間周波数の高い成分を指す()。しかし、実用的には周波数に加え振幅が分からなければ表面を評価することはできない。 現実の物体間の相互作用は粗さに左右される。ふつう粗い表面は滑らかな表面と比べて摩耗が激しく、摩擦係数は大きい(トライボロジーを見よ)。また、表面に不均一な部分があるとクラックや腐食の核生成サイトになりうるため、粗さは機械部品の性能を計る指標ともなる。その一方、表面が粗いと接着性が良くなることもある。 多くの場合表面は滑らかな方が望ましいが、工業的に粗さを制御するのは困難である。表面粗さを低減すると、生産コストはふつう指数関数的に増加する。これが部品の性能と低コストを両立させられない原因となることが多い。 粗さがわかっているサンプル(粗さ比較板)と触って比べるだけでも粗さを測定することはできるが、一般的に表面粗さ測定にはプロファイロメータが用いられる。プロファイロメータには接触式(主にダイヤモンド触針による)および非接触式(白色光干渉計など)がある。 場合によっては、適度な粗さが求められることもある。たとえばタッチパッドのような製品では、光沢表面にしてしまうと反射がまぶしかったり指が滑ったりするので適度な粗さが必要である。このような場合、振幅と空間周波数の両者が重要になる。.

新しい!!: 標準数と表面粗さ · 続きを見る »

製品

製品(せいひん)とは、主に工業において原材料を加工した後の完成品のこと。工業を営む企業においては主要な商品である。完成する前の段階では、「仕掛品」や「半製品」と呼ばれる。.

新しい!!: 標準数と製品 · 続きを見る »

誤差

誤差(ごさ、error)は、測定や計算などで得られた値 M と、指定値あるいは理論的に正しい値あるいは真値 T の差 ε であり、 で表される。.

新しい!!: 標準数と誤差 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: 標準数と部分集合 · 続きを見る »

抵抗器

抵抗器(ていこうき、resistor)とは、一定の電気抵抗値を得る目的で使用される電子部品であり受動素子である。通常は「抵抗」と呼ばれることが多い。 電気回路用部品として、電流の制限や、電圧の分圧、時定数回路などの用途に用いられる。集積回路など半導体素子の内部にも抵抗素子が形成されているが、この項では独立した回路部品としての抵抗器について述べる。.

新しい!!: 標準数と抵抗器 · 続きを見る »

標準数

標準数.

新しい!!: 標準数と標準数 · 続きを見る »

気球

気球(ききゅう)とは、空気より軽い気体を風船に詰め込む事で浮力を得る物のこと。飛行船と異なり推進装置を持たないが、高度の調整(上昇・下降)により人間や観測装置などを空中に送った後で地表に帰還させたり、物体を遠方に落下させたりできる。 航空機としての分類としては、軽航空機(LTA; Lighter-Than-Air)に分類される。.

新しい!!: 標準数と気球 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 標準数と温度 · 続きを見る »

日本工業規格

鉱工業品用) 日本工業規格(にほんこうぎょうきかく、Japanese Industrial Standards)は、工業標準化法に基づき、日本工業標準調査会の答申を受けて、主務大臣が制定する工業標準であり、日本の国家標準の一つである。JIS(ジス)またはJIS規格(ジスきかく)と通称されている。JISのSは英語 Standards の頭文字であって規格を意味するので、「JIS規格」という表現は冗長であり、これを誤りとする人もある。ただし、この表現は、日本工業標準調査会、日本規格協会およびNHKのサイトでも一部用いられている。.

新しい!!: 標準数と日本工業規格 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 標準数と数列 · 続きを見る »

ここにリダイレクトされます:

ISO 3JIS C 5063JIS Z 8601標準数列

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »