ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

国際天文基準座標系

索引 国際天文基準座標系

国際天文基準座標系(こくさいてんもんきじゅんざひょうけい)は、国際天文学連合(IAU)により採用された現行の標準天球座標系である。 日本語においては座標系とだけ呼ばれることが多いが、英語においては、座標系を規定する概念や考え方を"Reference System"、それを実現した座標系の実体を"Reference Frame"と呼び、概念と実体を区別している。天球座標系についても、概念を"International Celestial Reference System"(ICRS)、実体を"International Celestial Reference Frame"(ICRF)と区別しているが、日本語ではどちらも「国際天文基準座標系」と呼ぶ。.

28 関係: 基準系基本星表原点天体天球座標系天文学太陽系一般相対性理論座標位置天文学地球ノイズフロア分点クエーサー円運動元期国際天文学連合秒 (角度)銀河系銀河系外天文学超長基線電波干渉法赤道座標重力電波源通信総合研究所J2000.0惑星慣性系

基準系

基準系(きじゅんけい)、基準座標系(きじゅんざひょうけい)、または参照系(さんしょうけい、frame of reference, reference frame )は、物理学において、系の内部の対象の位置、方位、およびその他の性質の測定を行う基準となる座標系または座標軸の集合、またはの運動の状態に結びつけられた観測基準系 を言う。.

新しい!!: 国際天文基準座標系と基準系 · 続きを見る »

基本星表

基本星表(きほんせいひょう、基本カタログ、英語:fundamental catalogue)は位置記録の正確性の高い星表のことである。記載されている星の数は少ないが、位置の精度が非常に高い。このため、星の位置の相関関係から基準座標系を定義できる。現在までに6冊の双書が刊行された。 略称はドイツ語のFundamental-KatalogからFKである。FKX xxxxのようにXに改訂の番号、xxxxに星の番号を入れる。たとえばおひつじ座α星はFK5 74である。.

新しい!!: 国際天文基準座標系と基本星表 · 続きを見る »

原点

原点(げんてん、, origo)は、物事のはじまりや基(もと)、基準、根拠となるところ。人の人生、企業などの歴史を振り返る際に、出発点という意味で比喩でも用いられる。.

新しい!!: 国際天文基準座標系と原点 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 国際天文基準座標系と天体 · 続きを見る »

天球座標系

天球座標系(てんきゅうざひょうけい)とは、天文学で空の中での位置を表現するための座標系である。 天球座標では地球表面の測地系(経緯度)と同様の座標格子を用いるが、座標格子を天球にどのように投影するかによって、様々に異なった座標系が存在する。それぞれの座標系の違いは基準面をどう選ぶかによっている。この基準面によって空は二つの等しい半球に分けられ、半球の境界は大円になる。(地球の測地系では基準面は地球の赤道である。)それぞれの座標系はこの基準面のとり方によって名前が付けられている。以下に座標系の名前と基準面・極の名前を挙げる。.

新しい!!: 国際天文基準座標系と天球座標系 · 続きを見る »

天文学

星空を観察する人々 天文学(てんもんがく、英:astronomy, 独:Astronomie, Sternkunde, 蘭:astronomie (astronomia)カッコ内は『ラランデ歴書』のオランダ語訳本の書名に見られる綴り。, sterrenkunde (sterrekunde), 仏:astronomie)は、天体や天文現象など、地球外で生起する自然現象の観測、法則の発見などを行う自然科学の一分野。主に位置天文学・天体力学・天体物理学などが知られている。宇宙を研究対象とする宇宙論(うちゅうろん、英:cosmology)とは深く関連するが、思想哲学を起源とする異なる学問である。 天文学は、自然科学として最も早く古代から発達した学問である。先史時代の文化は、古代エジプトの記念碑やヌビアのピラミッドなどの天文遺産を残した。発生間もない文明でも、バビロニアや古代ギリシア、古代中国や古代インドなど、そしてイランやマヤ文明などでも、夜空の入念な観測が行われた。 とはいえ、天文学が現代科学の仲間入りをするためには、望遠鏡の発明が欠かせなかった。歴史的には、天文学の学問領域は位置天文学や天測航法また観測天文学や暦法などと同じく多様なものだが、近年では天文学の専門家とはしばしば天体物理学者と同義と受け止められる。 天文学 (astronomy) を、天体の位置と人間界の出来事には関連があるという主張を基盤とする信念体系である占星術 (astrology) と混同しないよう注意が必要である。これらは同じ起源から発達したが、今や完全に異なるものである。.

新しい!!: 国際天文基準座標系と天文学 · 続きを見る »

太陽系

太陽系(たいようけい、この世に「太陽系」はひとつしかないので、固有名詞的な扱いをされ、その場合、英語では名詞それぞれを大文字にする。、ラテン語:systema solare シュステーマ・ソーラーレ)とは、太陽および、その重力で周囲を直接的、あるいは間接的に公転する天体惑星を公転する衛星は、後者に当てはまるから構成される構造である。主に、現在確認されている8個の惑星歴史上では、1930年に発見された冥王星などの天体が惑星に分類されていた事もあった。惑星の定義も参照。、5個の準惑星、それを公転する衛星、そして多数の太陽系小天体などから成るニュートン (別2009)、1章 太陽系とは、pp.18-19 太陽のまわりには八つの惑星が存在する。間接的に太陽を公転している天体のうち衛星2つは、惑星では最も小さい水星よりも大きい太陽と惑星以外で、水星よりも大きいのは木星の衛星ガニメデと土星の衛星タイタンである。。 太陽系は約46億年前、星間分子雲の重力崩壊によって形成されたとされている。総質量のうち、ほとんどは太陽が占めており、残りの質量も大部分は木星が占めている。内側を公転している小型な水星、金星、地球、火星は、主に岩石から成る地球型惑星(岩石惑星)で、木星と土星は、主に水素とヘリウムから成る木星型惑星(巨大ガス惑星)で、天王星と海王星は、メタンやアンモニア、氷などの揮発性物質といった、水素やヘリウムよりも融点の高い物質から成る天王星型惑星(巨大氷惑星)である。8個の惑星はほぼ同一平面上にあり、この平面を黄道面と呼ぶ。 他にも、太陽系には多数の小天体を含んでいる。火星と木星の間にある小惑星帯は、地球型惑星と同様に岩石や金属などから構成されている小天体が多い。それに対して、海王星の軌道の外側に広がる、主に氷から成る太陽系外縁天体が密集している、エッジワース・カイパーベルトや散乱円盤天体がある。そして、そのさらに外側にはと呼ばれる、新たな小惑星の集団も発見されてきている。これらの小天体のうち、数十個から数千個は自身の重力で、球体の形状をしているものもある。そのような天体は準惑星に分類される事がある。現在、準惑星には小惑星帯のケレスと、太陽系外縁天体の冥王星、ハウメア、マケマケ、エリスが分類されている。これらの2つの分類以外にも、彗星、ケンタウルス族、惑星間塵など、様々な小天体が太陽系内を往来している。惑星のうち6個が、準惑星では4個が自然に形成された衛星を持っており、慣用的に「月」と表現される事がある8つの惑星と5つの準惑星の自然衛星の一覧については太陽系の衛星の一覧を参照。。木星以遠の惑星には、周囲を公転する小天体から成る環を持っている。 太陽から外部に向かって放出されている太陽風は、太陽圏(ヘリオスフィア)と呼ばれる、星間物質中に泡状の構造を形成している。境界であるヘリオポーズでは太陽風による圧力と星間物質による圧力が釣り合っている。長周期彗星の源と考えられているオールトの雲は太陽圏の1,000倍離れた位置にあるとされている。銀河系(天の川銀河)の中心から約26,000光年離れており、オリオン腕に位置している。.

新しい!!: 国際天文基準座標系と太陽系 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 国際天文基準座標系と一般相対性理論 · 続きを見る »

座標

幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、coordinate system)である。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。.

新しい!!: 国際天文基準座標系と座標 · 続きを見る »

位置天文学

位置天文学 (いちてんもんがく、英語:position(al) astronomy) は天文学の一分野。恒星や他の天体の位置、距離、運動を扱う。位置天文学の成果の一部は宇宙の距離梯子を決めるのに役立っている。 位置天文学には天文学者が観測結果を記述する際の座標系を与えるという基本的な役割があるが、これとは別に、天体力学、恒星系力学、銀河天文学といった分野において根本的に重要な役割を果たしている。観測天文学においては、移動する恒星状天体を同定する際に位置天文学の手法が欠かせない。位置天文学はまた時刻を管理する際にも使われる。現在の協定世界時 (UTC) は、国際原子時 (TAI) を地球の自転に同期させることで得られているが、この地球の自転は位置天文学の手法を用いて精密に観測されている。.

新しい!!: 国際天文基準座標系と位置天文学 · 続きを見る »

地球

地球(ちきゅう、Terra、Earth)とは、人類など多くの生命体が生存する天体である広辞苑 第五版 p. 1706.。太陽系にある惑星の1つ。太陽から3番目に近く、表面に水、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。.

新しい!!: 国際天文基準座標系と地球 · 続きを見る »

ノイズフロア

ノイズフロアを示すスペクトラムアナライザによる測定 信号理論において、ノイズフロアとは測定システム内のすべてのノイズ源と不要な信号の合計から作成される信号の尺度である。このときのノイズはモニタしている信号以外の信号と定義する。 無線通信や電子機器においては、熱雑音、黒体、宇宙雑音、遠くの雷雨などの大気雑音と偶発的雑音と言われることのあるその他の不要な人口信号を含むおそれがある。主要なノイズが測定機器内(例えば、雑音指数の低いレシーバによるものなど)で生成された場合、これは物理ノイズフロアとは対照的な機器ノイズフロアの例である。これらの単語は必ずしも明確に定義されたものではなく、ときに混用される。 電気システム間の干渉を避けることは、電磁両立性の分野の別個の問題である。 地震計などの測定システムにおいては、物理的なノイズフロアは偶発的なノイズによって決定され、それには近くの歩行者の交通量や近くの道路を含んでいる場合がある。測定された振幅を平均したときにノイズフロアと同じくらいである可能性があるため、ノイズフロアは確実にとることのできる最小の測定値を制限するものである。 電子機器のシステムでノイズフロアを下げる一般的な方法は、主要なノイズ源となっているシステムを冷却して熱雑音を低減することである。特殊な状況下では、ディジタル信号処理の技術を使用してノイズフロアを人工的に下げることもできる。 ノイズフロアを下回る信号は異なるスペクトラム拡散通信を使用することで検出することができる。この通信は特定の情報帯域幅の信号を意図的に周波数領域に拡散することで、結果としてより広い占有帯域幅を持つ信号が得られるというものである。.

新しい!!: 国際天文基準座標系とノイズフロア · 続きを見る »

分点

ノジオ、フォンダケッリ=ファンティーナ、シチリア 分点(ぶんてん、equinox)とは、天球上で天の赤道と黄道とが交わる点、および、太陽がこの点を通過する瞬間のことである。分点は2つあり、春と秋にそれぞれ通過する。 春のものを春分点 (vernal equinox) といい、これは太陽が南から北へ通過する(昇交点)。太陽が春分点を通る瞬間を春分、春分を含む日を春分日という。 秋のものを秋分点 (autumnal equinox) といい、これは太陽が北から南へ通過する(降交点)。太陽が秋分点を通る瞬間を秋分、秋分を含む日を秋分日という。 春分日・秋分日には、太陽はほぼ真東から昇りほぼ真西に沈む。また、昼(日の出から日没まで)と夜の長さがほぼ同じになる。これを昼夜平分時(ちゅうやへいぶんじ)という。 日本では、春分日・秋分日は国民の祝日(春分の日・秋分の日)となる ただし、上で「ほぼ」と書いたとおり、厳密には真東・真西・昼夜平分ではない。このずれの大きさは緯度によるが、北緯35°では、昼の時間は大気差により5.8分長く、太陽の視直径により2.6分長く、分点時刻が一般には正午からずれているせいで最大1.1分長くもしくは短くなるため、12時間より平均8.4分(7.3分~9.5分)長い。同様に、夜は短く、日の出・日の入りの方角はわずかに南寄りになる。また、均時差により、昼の長さが12時間8分だからといって5時56分に日が昇り18時4分に日が沈むわけではない。 地球の歳差により、天球上における分点の位置は移動する。それに伴い赤経・赤緯は年々変化するので、赤経・赤緯によって天体の位置を表す際には、それが何年の分点による赤経・赤緯であるかを示す必要がある。星図などでよく使われるのは1950年のものと2000年のもので、それぞれ1950.0分点、2000.0分点と表現する。.

新しい!!: 国際天文基準座標系と分点 · 続きを見る »

クエーサー

ーサーのイメージ クエーサー(Quasar)は、非常に離れた距離に存在し極めて明るく輝いているために、光学望遠鏡では内部構造が見えず、恒星のような点光源に見える天体のこと。クエーサーという語は準恒星状(quasi-stellar)の短縮形である。 強い電波源であるQSS(準恒星状電波源) (quasi-stellar radio source)と、比較的静かなQSO(準恒星状天体) (quasi-stellar object)がある。最初に発見されたのはQSSだが、QSOの方が多く発見されている。 日本語ではかつて準星などと呼ばれていた。.

新しい!!: 国際天文基準座標系とクエーサー · 続きを見る »

円運動

円運動(えんうんどう、circular motion)とは、物体の運動の向きとは垂直な方向に働く力によって引き起こされる運動である。特に中心力(常に円軌道の中心を向き、大きさが距離のみに依存する力)が働くことにより引き起こされる。 とくに円運動は天体の運動の基本であり、ニコラウス・コペルニクスやヨハネス・ケプラーの地動説の基礎となった。円運動は地上でもしばしば観測される。たとえばひもにおもりをつけて振り回すと円軌道を描く。.

新しい!!: 国際天文基準座標系と円運動 · 続きを見る »

元期

元期(げんき、)とは、時間的な起点をいう語であり、主として天体観測や測量において用いられる。「元期2000.0」と言った場合は、西暦2000年1月1日の世界時0時を年数、日数、時間の起点として用いるということである。例えば、暦表時の定義においては、T(ユリウス世紀)の起点を1900年1月0日12時としている。この1900年1月0日12時が、暦表時の元期である。また、ユリウス日の元期は、ユリウス暦紀元前4713年1月1日の正午(世界時)である。.

新しい!!: 国際天文基準座標系と元期 · 続きを見る »

国際天文学連合

国際天文学連合(こくさいてんもんがくれんごう、英:International Astronomical Union:IAU)は、世界の天文学者で構成されている国際組織である。国際科学会議 (ICSU) の下部組織となっている。恒星、惑星、小惑星、その他の天体に対する命名権を取り扱っている。その命名規則のために専門作業部会が設けられている。 IAUは天文電報の発行業務にも関わっており、スミソニアン天体物理観測所が運営している天文電報中央局 (Central Bureau for Astronomical Telegrams; CBAT) について支援している。 IAUは1919年に多くの団体を統合して設立された。最初の会長にはフランスのバンジャマン・バイヨーが選出された。 2009年現在、会員として、10,145人の天文学者などの個人会員と64の国家会員が所属している。 Headquarter(本部)の事務局は、フランスのパリのBd Arago(アラゴ通り)にある。総会はさまざまな国において開催されている。→#総会.

新しい!!: 国際天文基準座標系と国際天文学連合 · 続きを見る »

秒 (角度)

角度の単位としての秒(びょう、arcsecond, second of arc (SOA))は、分の1/60の角度である。時間における秒の用法から転じたものである。 1秒は1度の1/3600である。1度が円弧の1/360であるので、1秒は円弧の である。1ラジアンは約 である。 mas は、1秒の1/1000を表わす単位である。milliarcsecond に由来する。秒では単位として大きすぎる場合(恒星の年周視差や固有運動を表わすときなど)に用いられる。.

新しい!!: 国際天文基準座標系と秒 (角度) · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 国際天文基準座標系と銀河系 · 続きを見る »

銀河系外天文学

銀河系外天文学(Extragalactic astronomy)は、天文学の1分野で、我々の銀河系の外の宇宙を扱う学問である。別の言葉で言えば、銀河系天文学で扱われない領域全ての天体を研究する学問である。 観測機器の進歩により、現在はより遠くの天体を詳細に観測できるようになってきた。そのため、この分野を近銀河系外天文学(Near-Extragalactic Astronomy)と遠銀河系外天文学(Far-Extragalactic Astronomy)の2つの小分野に細分することがしばしば行われる。前者は我々の局部銀河群の銀河など、その内部(例:超新星残骸、アソシエーション)を詳細に観測できるくらい近い天体を扱う。後者は、明るい現象程度しか観測できないほど遠方の天体を扱う。 以下のようなトピックが含まれる。.

新しい!!: 国際天文基準座標系と銀河系外天文学 · 続きを見る »

超長基線電波干渉法

VLBIを構成する電波望遠鏡群の一部(ポーランドPiwnice) 超長基線電波干渉法(ちょうちょうきせんでんぱかんしょうほう、、)は、電波天文学における天文干渉法の一種である。離れたアンテナで観測したデータを、原子時計などで計測したタイミング情報とセットにして磁気テープなどに保存し、郵送などにより1か所に集約して相関させることで像を得る手法である。 解像度は、アレイを構成するアンテナのうち、最も離れた二つの間の距離に比例する。VLBIではこの距離を、ケーブルでアンテナ同士を物理的に接続できないような長さにまで拡大することを可能にする。大きく隔たったアンテナによるVLBIで高解像度の像を得ることができるのは、1950年代にが開発したclosure phase解像技術による。VLBIは通常、ラジオ波の波長域で用いられるが、可視光領域にも応用されつつある。.

新しい!!: 国際天文基準座標系と超長基線電波干渉法 · 続きを見る »

赤道座標

赤道座標(せきどうざひょう、equatorial coordinate system)は天体の位置を表す天球座標系の一つ。天球座標系の中で最も広く使われる。 赤道座標は以下の二つの座標値からなる。.

新しい!!: 国際天文基準座標系と赤道座標 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 国際天文基準座標系と重力 · 続きを見る »

電波源

電波源とは、強い電波を放出する、宇宙空間に存在する天体である。電波は様々な種類の源から来る。これらの天体は、宇宙で最も極度でエネルギーの大きい物理過程の表れである。.

新しい!!: 国際天文基準座標系と電波源 · 続きを見る »

通信総合研究所

通信総合研究所(Communications Research Laboratory, 略称:CRL)は、情報通信研究機構の前身(のひとつ)で、情報通信に関する研究、無線機器の型式認定などを行っていた、国立の研究機関である。 1952年(昭和27年)8月1日に、郵政省付属機関の「電波研究所」(郵政省電波研究所)として、電離層や電波伝搬の研究を行う電波観測所、標準電波の発射、電波技術の調査研究、無線機器の型式検定等の部門を統合し、3部7課と5電波観測所、定員380名、予算1億8000万円で発足した。 1988年(昭和63年)4月1日に通信総合研究所と名称変更した。その後、2001年(平成13年)4月1日に独立行政法人に移行し、2004年(平成16年)4月1日に通信・放送機構との統合により情報通信研究機構となった。.

新しい!!: 国際天文基準座標系と通信総合研究所 · 続きを見る »

J2000.0

J2000.0またはJ2000とは、天文学または測量学でいう元期のひとつであり、地球時の西暦2000年1月1.5日(1月1日12:00、正午)を指す。この時刻は、協定世界時では2000年1月1日11:58:55.816 UTC、日本標準時では、2000年1月1日20:58:55.816 に当たる。なお、地球時(TT)は、過去の暦表時と連続していて、閏秒のない時刻系で、世界時(UT)より約1分進んでいる。 J2000.0元期を使う状況では、以前にはB1950.0元期が使われていた。 特に、J2000.0分点の赤道座標を指す。1992年1月1日から、B1950.0分点のものに代わり使用されている。.

新しい!!: 国際天文基準座標系とJ2000.0 · 続きを見る »

惑星

惑星(わくせい、πλανήτης、planeta、planet)とは、恒星の周りを回る天体のうち、比較的低質量のものをいう。正確には、褐色矮星の理論的下限質量(木星質量の十数倍程度)よりも質量の低いものを指す。ただし太陽の周りを回る天体については、これに加えて後述の定義を満たすものだけが惑星である。英語 planet の語源はギリシア語のプラネテス(さまよう者、放浪者などの意。IPA: /planítis/ )。 宇宙のスケールから見れば惑星が全体に影響を与える事はほとんど無く、宇宙形成論からすれば考慮の必要はほとんど無い。だが、天体の中では非常に多種多様で複雑なものである。そのため、天文学だけでなく地質学・化学・生物学などの学問分野では重要な対象となっている別冊日経サイエンス167、p.106-117、系外惑星が語る惑星系の起源、Douglas N. C.Lin。.

新しい!!: 国際天文基準座標系と惑星 · 続きを見る »

慣性系

慣性系(かんせいけい、ガリレイ系とも、inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。 例えば、等速運動する座標系では、物体は外力を受けない限り等速直線運動を行うので、慣性系の1つである。 次に減速している車での座標系では、物体は外力を受けていないのに、前向きに運動を行う。よって慣性の法則が成立しないので、減速している車の座標系は慣性系ではない。.

新しい!!: 国際天文基準座標系と慣性系 · 続きを見る »

ここにリダイレクトされます:

ICRFICRSInternational Celestial Reference FrameInternational Celestial Reference System

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »