ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

プロトン化水素分子

索引 プロトン化水素分子

プロトン化水素分子(プロトンかすいそぶんし、protonated molecular hydrogen)、H3+ は水素原子核3個と電子2個からなる+1の電荷を持ったカチオンである。星間空間や水素ガスの放電中に、多量に存在する。星間空間は密度の比較的大きなところでも、地球上に比べて低圧(およそ10−15気圧以下)であり、他の分子との衝突頻度が少ないことからこのような反応性の高いイオンでもある程度の量が存在することができる。星間空間ではこの分子が他の多くの分子生成にとって出発分子であり、星間空間の化学において最も重要な役割を担っているといえる。また、H3+ は分子中にある2つの電子が共に価電子であり、最も単純な三原子カチオンでもある。.

54 関係: 原子核天王星宇宙線岡武史三中心二電子結合一酸化炭素平均自由行程価電子土星化学反応化学反応における核スピン保存則ネイチャーヤーン・テラー効果プロトンパーセクフィロソフィカル・トランザクションズフィジカル・レビュー分子アストロフィジカルジャーナルイオンイオン-分子反応イオン化エネルギーオングストロームジョゼフ・ジョン・トムソンサイエンス共鳴理論回転準位米国科学アカデミー紀要紫外線銀河系非経験的分子軌道法衝突電離質量分析法赤外分光法赤外線天文学電子電子ボルト電荷電気双極子電波天文学電波望遠鏡暗黒星雲核スピン異性体正三角形水素水素分子イオン準安定状態木星星間分子...星間分子の一覧星間ガス星間物質放電 インデックスを展開 (4 もっと) »

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: プロトン化水素分子と原子核 · 続きを見る »

天王星

天王星(てんのうせい、Uranus)は、太陽系の太陽に近い方から7番目の惑星である。太陽系の惑星の中で木星・土星に次ぎ、3番目に大きい。1781年3月13日、イギリスの天文学者ウィリアム・ハーシェルにより発見された。名称のUranusは、ギリシア神話における天の神ウーラノス(Ουρανός、ラテン文字転写: Ouranos)のラテン語形である。 最大等級+5.6等のため、地球最接近時は肉眼で見えることもある。のちにハーシェル以前に恒星として20回以上の観測記録(肉眼観測も含む)があることが判明した。.

新しい!!: プロトン化水素分子と天王星 · 続きを見る »

宇宙線

宇宙線(うちゅうせん、Cosmic ray)は、宇宙空間を飛び交う高エネルギーの放射線のことである名越 2011 p.3。主な成分は陽子であり、アルファ粒子、リチウム、ベリリウム、ホウ素、鉄などの原子核が含まれている。地球にも常時飛来している。.

新しい!!: プロトン化水素分子と宇宙線 · 続きを見る »

岡武史

岡 武史(おか たけし、1932年6月10日 - 、)は、銀河天文学の分野を専門とする化学者・天文学者である。天体化学の先駆者、地球外の三水素陽イオン の発見者として知られている。 2017年現在はシカゴ大学エンリコ・フェルミ研究所、天文学・天文物理学・化学科のR.

新しい!!: プロトン化水素分子と岡武史 · 続きを見る »

三中心二電子結合

三中心二電子結合(さんちゅうしんにでんしけつごう、three-center two-electron bond)とは、電子不足な化合物に現れる化学結合の様式のひとつで、3個の原子が2個の電子を共有しながら結びついている状態である。3c-2e と略記される。 三中心結合の考え方では、3個の原子がそれぞれ1個ずつ原子軌道を与え、3個の分子軌道、つまり結合性軌道と非結合性軌道と反結合性軌道を形成する。2個の電子がその結合性軌道へ入ると、3個の原子を結びつける結合力を生み出す。多くの場合、結合性軌道は3個の原子に均等に配置するのではなく、2個の原子の上に偏っている。また、3個の原子の並びはバナナのように曲がっており、バナナ型結合と称される。.

新しい!!: プロトン化水素分子と三中心二電子結合 · 続きを見る »

一酸化炭素

一酸化炭素(いっさんかたんそ、carbon monoxide)は、炭素の酸化物の1種であり、常温・常圧で無色・無臭・可燃性の気体である。一酸化炭素中毒の原因となる。化学式は CO と表される。.

新しい!!: プロトン化水素分子と一酸化炭素 · 続きを見る »

平均自由行程

平均自由行程(へいきんじゆうこうてい、mean free path)または平均自由行路(へいきんじゆうこうろ)とは、物理学や化学のうち、気体分子運動論において、分子や電子などの粒子が、散乱源(同じ粒子の場合もあれば、異なる粒子の場合もある)による散乱(衝突)で妨害されること無く進むことのできる距離(これを自由行程という)の平均値のことを言う。粒子が平均自由行程だけ運動すると、平均として必ず他の粒子と1回衝突する。 平均自由行程は、その系の特性や粒子により異なってくる。そのため、一般的な場合、ランダムな速度を持った粒子が、散乱源に衝突するまでの距離として、次の式で表記される。 ただし、\ellは平均自由行程(単位m)で、n は散乱源の数密度(m-3)、σは散乱時の有効断面積(m2)である。粒子の速度がマクスウェル分布に従うと仮定される場合、平均自由行程は次式で表せる。.

新しい!!: プロトン化水素分子と平均自由行程 · 続きを見る »

価電子

価電子(かでんし、valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子(げんしかでんし)ともいう。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。 原子が化合物や結晶等を構成する際に、それらの化学結合や物性は、その原子内の核外電子が深く関わる。原子内の電子軌道を回る電子には、化学結合や物性に深く関わるものと、ほとんど関係しないものがある。化学結合や物性に関わる電子は、原子内の最外殻など外側を回っている。これらが価電子と言われる。逆に、原子核に近い軌道にある電子(内殻電子)は、通常の物性や化学結合に寄与することはほとんどない(が、例外も存在する)。 固体の絶縁体や半導体における価電子帯を占める電子を指すこともある。固体の金属においては、伝導電子(自由電子)に相当する。 典型元素の価電子は、その元素より原子番号の小さい最初の希ガス原子の核外電子の軌道より外側の軌道を回るものがなる。ただし、典型元素でも、ガリウムの3d軌道のように、比較的浅い内殻電子は、価電子的な振る舞いをし物性や化学結合に寄与する場合がある。例えば、窒化ガリウムでは、化合物の構成に関与している。また、遷移元素では、価電子は最外殻電子を意味していないため、特定の価電子を持っていないと言える。特にf電子をもつ元素では、価電子の定義は必ずしもこのようにはならない場合が少なくない。.

新しい!!: プロトン化水素分子と価電子 · 続きを見る »

土星

土星(どせい、、、)は、太陽から6番目の、太陽系の中では木星に次いで2番目に大きな惑星である。巨大ガス惑星に属する土星の平均半径は地球の約9倍に当る。平均密度は地球の1/8に過ぎないため、巨大な体積の割りに質量は地球の95倍程度である。そのため、木星型惑星の一種とされている。 土星の内部には鉄やニッケルおよびシリコンと酸素の化合物である岩石から成る中心核があり、そのまわりを金属水素が厚く覆っていると考えられ、中間層には液体の水素とヘリウムが、その外側はガスが取り巻いている。 惑星表面は、最上部にあるアンモニアの結晶に由来する白や黄色の縞が見られる。金属水素層で生じる電流が作り出す土星の固有磁場は地球磁場よりも若干弱く、木星磁場の1/12程度である。外側の大気は変化が少なく色彩の差異も無いが、長く持続する特徴が現れる事もある。風速は木星を上回る1800km/hに達するが、海王星程ではない。 土星は恒常的な環を持ち、9つが主要なリング状、3つが不定的な円弧である。これらはほとんどが氷の小片であり、岩石のデブリや宇宙塵も含まれる。知られている限り62個の衛星を持ち、うち53個には固有名詞がついている。これにはリングの中に存在する何百という小衛星(ムーンレット)は含まれない。タイタンは土星最大で太陽系全体でも2番目に大きな衛星であり、水星よりも大きく、衛星としては太陽系でただひとつ有意な大気を纏っている。 日本語で当該太陽系第六惑星を「土星」と呼ぶ由来は、古代中国において五惑星が五行説に当てはめて考えられた際、この星に土徳が配当されたからである。英語名サターンはローマ神話の農耕神サートゥルヌスに由来する。.

新しい!!: プロトン化水素分子と土星 · 続きを見る »

化学反応

化学反応(かがくはんのう、chemical reaction)は、化学変化の事、もしくは化学変化が起こる過程の事をいう。化学変化とは1つ以上の化学物質を別の1つ以上の化学物質へと変化する事で、反応前化学物質を構成する原子同士が結合されたり、逆に結合が切断されたり、あるいは化学物質の分子から電子が放出されたり、逆に電子を取り込んだりする。広義には溶媒が溶質に溶ける変化や原子のある同位体が別の同位体に変わる変化、液体が固体に変わる変化MF2等も化学変化という。 化学変化の前後では、化学物質の分子を構成する原子の結合が変わって別の分子に変化する事はあるが、原子そのものが別の原子番号の原子に変わる事はない(ただし原子間の電子の授受や同位体の変化はある)。この点で原子そのものが別の原子に変化する原子核反応とは大きく異なる。 化学反応では反応前の化学物質を反応物(reactant)、反応後の化学物質を生成物(product)といい、その過程は化学反応式で表記される。例えば反応物である(塩酸)とNaOH(水酸化ナトリウム)が化学反応して生成物であるH2O(水分子)とNaCl(食塩)ができあがる状況を示した化学反応式は と表記される。.

新しい!!: プロトン化水素分子と化学反応 · 続きを見る »

化学反応における核スピン保存則

化学反応における核スピン保存則(かがくはんのうにおけるかくスピンほぞんそく)は、化学反応の反応物の核スピン修飾が生成物の核スピン修飾に影響を及ぼす時の保存則。1977年にクアック(M. Quack)が、反応遷移状態の核スピン修飾の対称性を考慮することで、理論的に導出した。。1997年にUyらによって実験的検証がされた。.

新しい!!: プロトン化水素分子と化学反応における核スピン保存則 · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: プロトン化水素分子とネイチャー · 続きを見る »

ヤーン・テラー効果

ヤーン・テラー効果(ヤーン・テラーこうか、Jahn-Teller effect)またはヤーン・テラー変形(ヤーン・テラーへんけい、Jahn-Teller distortion)は、特定の状況下で非線形分子の構造が歪む現象のことである。この電子的な作用は、電子的に縮退した非線形分子は安定ではありえないということを群論を用いて証明したハーマン・ヤーンとエドワード・テラーにちなんで名付けられた。この効果は、電子的に縮退した基底状態をもつあらゆる非線形分子は変形によって錯体のエネルギーが下がるため、縮退が解けるような幾何学的変形を受けるであろうと述べている。.

新しい!!: プロトン化水素分子とヤーン・テラー効果 · 続きを見る »

プロトン

記載なし。

新しい!!: プロトン化水素分子とプロトン · 続きを見る »

パーセク

パーセク(、記号: pc)は、距離を表す計量単位であり、約 (約3.26光年)である。主として天文学で使われる。 1981年までは天文学の分野に限り国際単位系 (SI) と併用してよい単位とされていたが、現在ではSIには含まれていない単位である。 年周視差が1秒角 (3600分の1度) となる距離が1パーセクである。すなわち、1天文単位 (au) の長さが1秒角の角度を張るような距離を1パーセクと定義する。 1 パーセクは次の値に等しい。.

新しい!!: プロトン化水素分子とパーセク · 続きを見る »

フィロソフィカル・トランザクションズ

『フィロソフィカル・トランザクションズ』(The Philosophical Transactions of the Royal Society)は王立協会の発行する学術論文誌。『哲学紀要』などと訳されることもある。創刊は1665年3月6日で英語圏では最古、世界的にもフランスの『ジュルナル・デ・サヴァン』(fr:Journal des sçavans)についで古い学術雑誌であり、現在でも刊行されている最長寿の科学雑誌でもある。フィロソフィカルを名乗るが、現在でいう狭義の哲学を指すわけではなく、古い意味における自然哲学、現在でいう科学を意味している。.

新しい!!: プロトン化水素分子とフィロソフィカル・トランザクションズ · 続きを見る »

フィジカル・レビュー

『フィジカル・レビュー』(英語:Physical Review)はアメリカ物理学会が発行する学術雑誌で、物理学の専門誌としては最も権威がある。現在、Physical Review AからEまでの領域別専門誌と、物理学全領域を扱う速報誌Physical Review Lettersに分かれており、特にPhysical Review Lettersに論文を載せることは物理学者の一つの目標となっている。.

新しい!!: プロトン化水素分子とフィジカル・レビュー · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: プロトン化水素分子と分子 · 続きを見る »

アストロフィジカルジャーナル

『アストロフィジカルジャーナル』(The Astrophysical Journal)とは、天文学と天体物理学を扱う査読制度付き学術雑誌である。1893年にアメリカ合衆国の天文学者ジョージ・E・ヘールとジェームズ・エドワード・キーラーによって創刊された。500ページの厚さの号を一か月に3冊ほど発行している。 1953年以降は、アストロフィジカルジャーナル本体の補足として『アストロフィジカルジャーナル・サプリメントシリーズ』(- Supplement Series)が出版されている。これは2ヶ月に1巻のペースで刊行され、それぞれの巻は280ページの厚さの号2つから成り立っている。この他に、研究者の間で迅速な意見交換を行うために、『アストロフィジカルジャーナル・レターズ』(- Letters)が発行されている。 出版は英国物理学会出版局がアメリカ天文学会に代わって行っている。かつてはシカゴ大学出版局から刊行されていたが、2009年1月に現在の出版局に移された。2008年には同学会の別の学術雑誌アストロノミカルジャーナルが英国物理学会出版局に移されており、アストロフィジカルジャーナルの移管はこれに続くものだった。.

新しい!!: プロトン化水素分子とアストロフィジカルジャーナル · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: プロトン化水素分子とイオン · 続きを見る »

イオン-分子反応

イオン-分子反応(イオン-ぶんしはんのう、英: ion-molecular reaction)は、イオンと分子による衝突で起こる反応、およびそれらの反応過程の総称を言う。分子雲などの低温・低密度環境においては、イオン-分子反応のような障壁の低い反応が主に起こると考えられるW.D. Watson, "The Rate of Formation of Interstellar Molecules by Ion-Molecule Reactions.", Astrophys.

新しい!!: プロトン化水素分子とイオン-分子反応 · 続きを見る »

イオン化エネルギー

イオン化エネルギー(イオンかエネルギー、英語:ionization energy、電離エネルギー、イオン化ポテンシャルとも言う)とは、原子、イオンなどから電子を取り去ってイオン化するために要するエネルギー。ある原子がその電子をどれだけ強く結び付けているのかの目安である。 気体状態の単原子(または分子の基底状態)の中性原子から取り去る電子が1個目の場合を第1イオン化エネルギー(IE1)、2個目の電子を取り去る場合を第2イオン化エネルギー(IE2)、3個目の電子を取り去る場合を第3イオン化エネルギー(IE3)・・・(以下続く)と言うShriver & Atkins (2001), p.39。。単にイオン化エネルギーといった場合、第1イオン化エネルギーのことを指すことがある。 イオン化エネルギーの一般的な傾向は、s軌道とp軌道の相対的エネルギーとともに、電子の結合に対する有効核電荷核電荷の効果を考えることによって説明できる。 原子核の正電荷が増すにつれ、与えられた軌道にある負に荷電した電子はより強いクーロン引力を受け、より強く保持される。ヘリウムの1s電子を除去するには水素の1s電子を除去するよりも多くのエネルギーを必要とする。 周期表の同じ周期の中で最高のイオン化エネルギーは希ガスのものであり、希ガスは安定な閉殻電子配置をもつといわれる。 主量子数nの値が小さい内殻電子のイオン化エネルギーは価電子に比べ格段に大きいShriver & Atkins (2001), p.43。。たとえば電子3個のリチウムではIE1は5.32eV であるが、1sからのIE2は75.6eVである。2s軌道の電子は1s軌道の電子ほど強く保持されていない。 最低のイオン化エネルギーは周期表の左端にある第1族元素のものである。これらの原子のひとつから電子1個を除くと希ガス原子と同じ閉殻電子配置を持つイオンになる。 どの原子からも最も容易に失われる電子は最高エネルギー軌道にある電子からである。.

新しい!!: プロトン化水素分子とイオン化エネルギー · 続きを見る »

オングストローム

ングストローム()は、長さの単位である。原子や分子の大きさ、可視光の波長など、非常に小さな長さを表すのに用いられる。 1Åは10−10m.

新しい!!: プロトン化水素分子とオングストローム · 続きを見る »

ジョゼフ・ジョン・トムソン

ー・ジョゼフ・ジョン・トムソン(Sir Joseph John Thomson, 1856年12月18日-1940年8月30日)は、イギリスの物理学者。しばしばJ.

新しい!!: プロトン化水素分子とジョゼフ・ジョン・トムソン · 続きを見る »

サイエンス

『サイエンス』(Science)は、1880年に創刊され、現在アメリカ科学振興協会 (AAAS)によって発行されている学術雑誌である。.

新しい!!: プロトン化水素分子とサイエンス · 続きを見る »

共鳴理論

二酸化窒素の寄与構造の内の2種類 化学における共鳴理論(きょうめいりろん)とは、量子力学的共鳴の概念により、共有結合を説明しようとする理論である。.

新しい!!: プロトン化水素分子と共鳴理論 · 続きを見る »

回転準位

回転準位(かいてんじゅんい、rotational state)は量子力学において、分子の重心の移動を伴わない回転運動を表す量子状態である。回転準位間の遷移を回転遷移と呼び、多くの場合、気相におけるマイクロ波(特に、テラヘルツ波、サブミリ波、ミリ波)分光法を用いて観測される。.

新しい!!: プロトン化水素分子と回転準位 · 続きを見る »

米国科学アカデミー紀要

『米国科学アカデミー紀要』(英語:Proceedings of the National Academy of Sciences of the United States of America、略称:PNAS または Proc.

新しい!!: プロトン化水素分子と米国科学アカデミー紀要 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: プロトン化水素分子と紫外線 · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: プロトン化水素分子と銀河系 · 続きを見る »

非経験的分子軌道法

非経験的分子軌道法(ひけいけんてきぶんしきどうほう、ab initio molecular orbital method)は、量子化学に基づく計算化学手法である。 非経験的分子軌道法では、ハートリー-フォック方程式(正確には、閉殻系の場合はRoothaan-Hall方程式、開殻系の場合はPople-Nesbet方程式である)を解くために必要な分子積分を、実験値に置き換えたり省略したりせずにすべて計算する。物理定数以外の実験値を全く使用せずに分子軌道を計算するため、ab initio MO法、ab initio分子軌道法とも呼ばれる。 ab initioという用語は、ベンゼンの励起状態に関する半経験的研究においておよびら共同研究者によって、量子化学において初めて使われた。背景はパーによって詳述されている。「量子力学の第一原理から」という現代的意味で用いたのは、Chenやローターンが初めてで、AllenおよびKaroは論文のタイトルにも用いて明確にこの用語を定義した。 ほとんどの場合、シュレーディンガー方程式を解くために用いられる基底関数系(大抵LCAOアンザッツから構築される)は完全ではなく、イオン化や散乱過程と関連したヒルベルト空間に広がらない(を参照)。ハートリー-フォック法ならびに配置間相互作用法では、この近似によってシュレーディンガー方程式を「単純」なの固有値方程式として扱うことができ、解の集合が得られる。.

新しい!!: プロトン化水素分子と非経験的分子軌道法 · 続きを見る »

衝突電離

衝突電離(しょうとつでんり、impact ionization)とは、半導体や絶縁体に高電界を印加した場合に、電子やホールのキャリアが材質を構成する原子もしくは分子に衝突しイオン化させると同時に、複数のキャリアを作り出す現象。 衝突電離が生じるには十分な運動エネルギーが必要であるため、高い電界が必要である。 この衝突電離が生じて増加したキャリアが更に衝突電離を引き起こすと、正のフィードバックが働きアヴァランシェ・ブレークダウン の定訳はないが、それぞれ「雪崩」「降伏」の意味なので、雪崩降伏などと訳される場合もある。 が発生する。高抵抗の材質でこのアヴァランシェ・ブレークダウンが発生し、低抵抗のフィラメント状の領域ができることを電流フィラメントと呼ぶ。.

新しい!!: プロトン化水素分子と衝突電離 · 続きを見る »

質量分析法

質量分析法(しつりょうぶんせきほう、mass spectrometry、略称: MS) とは、分子をイオン化し、そのm/zを測定することによってイオンや分子の質量を測定する分析法である。日本語では「MS」とかいて慣用的に「マス」と読むことも多いが、日本質量分析学会では国際的に通じる読み方である「エムエス」を推奨している。.

新しい!!: プロトン化水素分子と質量分析法 · 続きを見る »

赤外分光法

赤外分光法(せきがいぶんこうほう、、 略称IR)とは、測定対象の物質に赤外線を照射し、透過(あるいは反射)光を分光することでスペクトルを得て、対象物の特性を知る方法のことをいう。対象物の分子構造や状態を知るために使用される。.

新しい!!: プロトン化水素分子と赤外分光法 · 続きを見る »

赤外線天文学

赤外線天文学(せきがいせんてんもんがく、英語:infrared astronomy)は天文学や天体物理学の一分野で、赤外線の波長で観測できる天体を扱うものである。可視光線はおよそ400nm(紫)から700nm(赤)までの波長域に分布するが、700nm よりも波長が長く、マイクロ波よりも短い波長の電磁波を赤外線と呼ぶ(赤外線の波長域の中でも比較的長波長のものはサブミリ波と呼ぶ場合もある)。 研究者は赤外線天文学を光学天文学の一部として分類している。これは、赤外線天文学でも可視光の天文学と同様の観測装置(鏡、レンズ、固体撮像素子など)が通常用いられるためである。.

新しい!!: プロトン化水素分子と赤外線天文学 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: プロトン化水素分子と電子 · 続きを見る »

電子ボルト

物理学において、電子ボルト(エレクトロンボルト、electron volt、記号: eV)とはエネルギーの単位のひとつ。 素電荷(そでんか)(すなわち、電子1個分の電荷の符号を反転した値)をもつ荷電粒子が、 の電位差を抵抗なしに通過すると得るエネルギーが 。.

新しい!!: プロトン化水素分子と電子ボルト · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: プロトン化水素分子と電荷 · 続きを見る »

電気双極子

電気双極子()とは、大きさの等しい正負の電荷が対となって存在する状態のことである。.

新しい!!: プロトン化水素分子と電気双極子 · 続きを見る »

電波天文学

電波天文学(でんぱてんもんがく、英語:radio astronomy)は、電波を天体の観測手段として用い、天体に関する研究を行う天文学の一分野。.

新しい!!: プロトン化水素分子と電波天文学 · 続きを見る »

電波望遠鏡

'''電波望遠鏡''' アメリカ合衆国ニューメキシコ州ソコロに並ぶ超大型干渉電波望遠鏡群。直径25mのパラボラアンテナを27台集積し、直径130mの電波望遠鏡として機能する '''アレシボ電波望遠鏡''' 自然の窪地を利用した、305mの巨大球面アンテナ。ただしアンテナの向きは変更できない。プエルトリコ、アレシボ 電波望遠鏡(でんぱぼうえんきょう、radio telescope)は、可視光線を集光して天体を観測する光学式の天体望遠鏡に対して、電波を収束させて天体を観測する装置の総称。これを専門に用いる電波天文学という分野がある。.

新しい!!: プロトン化水素分子と電波望遠鏡 · 続きを見る »

暗黒星雲

ハッブル宇宙望遠鏡が撮影したオリオン座の馬頭星雲のクローズアップ 暗黒星雲(あんこくせいうん、dark nebula)とは天体の一種で、背後の恒星などの光源によって影として浮かび上がる星間雲(周囲よりも高密度の星間ガスや宇宙塵が、他の空域より濃く集まっている領域)のことをいう。 暗黒星雲という用語は星間雲のうち、人間が可視光領域で認識できるものの呼称であるから、狭義の星間雲、あるいは狭義の分子雲として用いられることもある。.

新しい!!: プロトン化水素分子と暗黒星雲 · 続きを見る »

核スピン異性体

核スピン異性体(かくスピンいせいたい、nuclear spin isomer)は核スピンが0でない原子核が分子内において等価な位置に2つ以上有る時に発生する核スピン修飾 (かくスピンしゅうしょく、nuclear spin modification) の違いによる異性体。例えば、水素分子のように等価な原子が二つのものの場合、核スピンが置換に対して対称なものをオルトと呼び、反対称なものをパラと呼ぶ。これらの異性体間の変換は核スピンの変換を伴うために、気相のような自由空間では非常に遅いとされる。よって、このような場合、お互い別々の分子として扱われることがある。.

新しい!!: プロトン化水素分子と核スピン異性体 · 続きを見る »

正三角形

正三角形(せいさんかくけい、equilateral triangle)は、正多角形である三角形である。つまり、3本の辺の長さが全て等しい三角形である。3つの内角の大きさが全て等しい三角形と定義してもよい。1つの内角は 60°(π/3 rad)である。また一つの内角が60°である二等辺三角形は正三角形となる。 正三角形.

新しい!!: プロトン化水素分子と正三角形 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: プロトン化水素分子と水 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

新しい!!: プロトン化水素分子と水素 · 続きを見る »

水素分子イオン

水素分子イオン(すいそぶんしイオン、Hydrogen molecular ion)は、H2+で表される最も単純な分子イオンである。正電荷を持つ2つの陽子と負電荷を持つ1つの電子から構成され、中性水素分子のイオン化によって形成される。1つの電子しか持たないことから電子相関がなく、シュレディンガー方程式が比較的直接的に解けるため、理論的に興味を持たれてきた。エネルギー固有値の解析解は、ランベルトのW関数の一般化である。そのため、固定核の場合は、数式処理システムを用いた実験数学手法で完全に解析することができる。そのため、多くの量子化学の教科書に例として掲載されている。 H2+の最初の量子力学的取扱は、デンマークの物理学者Øyvind Burrauによって、エルヴィン・シュレーディンガーが波動方程式を発表した翌年の1927年に発表された。前期量子論を用いた初期の研究は、1922年にカレル・ニーセンとヴォルフガング・パウリ、1925年にハロルド・ユーリーによって発表された。1928年にはライナス・ポーリングがBurrauの研究とヴァルター・ハイトラー、フリッツ・ロンドンによる水素分子の研究をまとめた総説を発表した。 H2+の結合は、結合次数が1.5の一電子共有結合として記述される。 このイオンは、分子雲の中でも見られ、星間物質の化学においても重要である。.

新しい!!: プロトン化水素分子と水素分子イオン · 続きを見る »

準安定状態

準安定状態(じゅんあんていじょうたい、Metastable state(s) )は、真の安定状態では無いが、大きな乱れが与えられない限り安定に存在できるような状態。準安定状態は小さな乱れに対しては安定であるが、大きな乱れが与えられると不安定になり、真の安定状態へ変化してしまう。 準安定状態は非平衡状態なので、いつかは真の安定状態へ変化するが、その変化の時間が非常に長いのが特徴である。「自由エネルギーが極小値をとるような状態」という記述がされることが多いが、それはあくまでイメージであることに注意しなければならない。そもそも平衡熱力学では平衡状態しか予言できないので準安定状態は扱えない。 準安定状態は、一つだけとは限らず、多数存在し得る。準安定状態同士、準安定状態と最安定状態の間には、乗り越えるべきエネルギー障壁が存在する。障壁は高い場合もあれば、低い場合もありまちまちである。障壁を乗り越えるような駆動力(熱など)があれば、より安定な状態へと移っていく。 準安定な状態の例としては、過冷却状態、過飽和状態、ガラス状態、常温・常圧におけるダイヤモンド(最も安定なのはグラファイト)、アナターゼ型の二酸化チタンなどがある。.

新しい!!: プロトン化水素分子と準安定状態 · 続きを見る »

木星

記載なし。

新しい!!: プロトン化水素分子と木星 · 続きを見る »

星間分子

星間分子(せいかんぶんし、interstellar molecule)は恒星間の希薄空間(星間空間)の中でも、一部にある高密度な分子雲中に存在する分子の総称。1930年代に光学望遠鏡によって観測された、希薄な分子雲中を通った紫外線の吸収が、分子雲の中に存在するCH、CNによるものであると1940年に確認され、初めて星間空間に分子が存在することが示された。その後、1960年代以降、電波望遠鏡が発展するに伴い、OHの発見を皮切りに多数の分子が発見され2000年までには100種類以上の分子が発見されている。(星間分子の一覧).

新しい!!: プロトン化水素分子と星間分子 · 続きを見る »

星間分子の一覧

このリストは、天体望遠鏡を用いて行われた分子雲、原始惑星系円盤等からの電磁波観測により発見され、同定された星間分子の一覧(せいかんぶんしのいちらん)である。リストは構成原子毎に挙げた。イオンが検出されている分子についてはそれも示した。.

新しい!!: プロトン化水素分子と星間分子の一覧 · 続きを見る »

星間ガス

星間ガス(せいかんガス、Interstellar gas)は、宇宙空間に漂う水素やヘリウムを主体とした気体のことである。その密度は、平均的には1立方センチメートルあたり水素原子が数個程度という希薄なものであるが、高密度に集積すれば、星雲として恒星が生まれる母胎にもなる。 宇宙空間は、まったく物質の存在しない真空状態のように思われるが、実際には、全体にわずかながら「星間物質」と呼ばれる物質が漂っている。地上の実験室で達成できる真空よりもはるかに高度な、ほぼ絶対真空に等しいほどの非常に希薄なものであるが、星々の間の空間に存在する星間物質の総量は、目に見える恒星や惑星などの天体にも匹敵する。 星間ガスも、宇宙塵とともに星間物質の一種であるが、重元素から成る固体の微粒子である宇宙塵とは区別される。星間物質の質量比は、水素が約70%、ヘリウムが約30%で、残りが珪素・炭素・鉄などの重元素となっている。これらの重元素が宇宙塵となり、したがって存在比は星間ガスの方が圧倒的に多い。星間ガスは、中性水素ガスや電離水素領域(HII領域)、超新星残骸や惑星状星雲、暗黒星雲、散光星雲、分子雲などとして観測される。 銀河系のような渦状銀河においては、中心核(バルジ)や円盤(ディスク)の銀河面に集中しており、銀河系全体を球状に取り巻く銀河ハローにもわずかに分布している。.

新しい!!: プロトン化水素分子と星間ガス · 続きを見る »

星間物質

星間物質(せいかんぶっしつ、Interstellar medium、ISM)は、恒星間の宇宙空間に分布する希薄物質の総称である。密度では、地球の上層大気よりも遙かに希薄であるが、地上からもしばしば星雲として観測される。大量の星間物質が凝縮して、星を構成する材料にもなる。.

新しい!!: プロトン化水素分子と星間物質 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

新しい!!: プロトン化水素分子と放電 · 続きを見る »

ここにリダイレクトされます:

H3+

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »