ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

G.729.1

索引 G.729.1

G.729.1は ITU-T G.729 を拡張した広帯域の音声とオーディオ用のコーデックで、G.729、G.729.A、G.729.Bとの相互運用性があり、8 kbps~32 kbps の広範囲のビットレートをサポートする。主に VoIP 用に利用されている。 G.729.1の正式な名称は"G.729-based embedded variable bit-rate coder:An 8-32 kbit/s scalable wideband coder bitstream interoperable with G.729" (G.729 ベースのエンベデッド可変ビットレート符号化: G.729 とビット列互換な 8-32 kbit/sスケーラブル広帯域符号化)である。.

35 関係: Algebraic Code Excited Linear PredictionAMR-WB帯域幅修正離散コサイン変換包絡線パケットビットレートビット毎秒フレームベクトル量子化利得 (電気工学)周波数領域アルゴリズムコーデックスペクトルサンプリング周波数Code Excited Linear Prediction符号化相互運用性音声音声符号化音質G.711G.722G.722.1G.723G.723.1G.726G.729Internet Engineering Task ForceIPネットワークITU-TReal-time Transport ProtocolVoIP時間領域

Algebraic Code Excited Linear Prediction

Algebraic Code Excited Linear Prediction(algebraic CELP、代数CELP、代数符号励振線形予測)あるいは ACELP とは、CELPを応用した音声符号化アルゴリズムである。効率が良いため、VoIPや携帯電話などの音声コーデックで広く用いられている。 ACELP はITU-T G.723.1(5.3kbps)、G.729(8kbps)、G.722.2(6.6-23.85kbps)、及び携帯電話用の GSM AMR(GSM/W-CDMA用)、AMR-WB(W-CDMA用、AMRのワイドバンド版)、EVRC(CDMA2000用)、VMR-WB(CDMA2000用のワイドバンド版)、SMV(CDMA2000用)、PDC-EFR(PDC用)などで使用されている。.

新しい!!: G.729.1とAlgebraic Code Excited Linear Prediction · 続きを見る »

AMR-WB

AMR-WB(Adaptive Multi-Rate Wideband)は、Adaptive Multi-Rate(AMR)をベースとするマルチレートの広帯域音声符号化方式で、GSMやW-CDMA 方式の第三世代携帯電話で利用される。 AMR-WB と区別するため、従来の AMR は AMR-NB(Adaptive Multi-Rate Narrowband)と呼ばれることもある。 同じ仕様は ITU-T が勧告した広帯域音声符号化方式 G.722.2 でも使用されている ITU-T Recommendation G.722.2 (07/2003), Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB).

新しい!!: G.729.1とAMR-WB · 続きを見る »

帯域幅

帯域幅(たいいきはば)または、帯域(たいいき)、周波数帯域(しゅうはすうたいいき)、バンド幅(英: Bandwidth)とは、周波数の範囲を指し、一般にヘルツで示される。帯域幅は、情報理論、電波通信、信号処理、分光法などの分野で重要な概念となっている。 帯域幅と情報伝達における通信路容量とは密接に関連しており、通信路容量のことを指す代名詞のように俗称的にしばしば「帯域幅」の語が使われる。特に何らかの媒体や機器を経由して情報(データ)を転送する際の転送レートを「帯域幅」あるいは「バンド幅」と呼ぶ。.

新しい!!: G.729.1と帯域幅 · 続きを見る »

修正離散コサイン変換

修正離散コサイン変換(しゅうせいりさんコサインへんかん)または変形離散コサイン変換 (modified discrete cosine transform; MDCT) とは、離散時間信号のサンプル値の系列を時間領域から周波数領域へ変換する離散時間信号処理技法の一種である。 主にMP3やAAC、Vorbisといった音声圧縮などで用いられている。 逆変換は逆修正離散コサイン変換 (IMDCT) である。 MDCTは、窓を半分ずつ重複させながら変換を行う重複直交変換において、変換後のデータ量が増加しないように設計されている。 具体的には、Nの信号からN/2の係数列を出力する(信号は2回ずつ使われる)。 このような重複直交変換はELT(Extended Lapped Transform)で一般化されている。 完全再構成条件として、窓関数はPrincen-Bradley条件を満たす必要がある。 このような窓関数としてはMP3に用いられているsine窓や、Vorbis窓がある。 また、任意の分析用窓関数から条件を満たすMDCT用窓関数を導出する方法もあり、AACではカイザー窓を積和して得られるカイザー・ベッセル派生窓(KBD窓)が用いられている。 高速演算法としては、係数列をDCT-IVに変換する方法と、FFTに変換する方法がある。順変換、逆変換ともにN/2のバッファで実装可能である。.

新しい!!: G.729.1と修正離散コサイン変換 · 続きを見る »

包絡線

包絡線(ほうらくせん、envelope)とは、与えられた曲線族と接線を共有する曲線、すなわち与えられた(一般には無限個の)全ての曲線たちに接するような曲線のことである。身近なところでは、AMラジオ放送に利用されている振幅変調の電波信号の包絡線が音声信号である。 包絡線は、次のようにして求められる。媒介変数 t ∈ R で添字付けられる n 次元ユークリッド空間 Rn 上の曲線族 t∈R に対する包絡線は、連立方程式 \begin \end から t を消去して得られる曲線 φ(x1,..., xn).

新しい!!: G.729.1と包絡線 · 続きを見る »

パケット

パケット(packet)とは、日本語で「小包」の意味であるが、日本では専らパケット通信または蓄積交換(通信方式)における情報の伝送単位を指す。広義には単にある程度の大きさのデータのかたまりのこと。 主としてISOのOSI参照モデルではネットワーク層 (Layer 3)で使われる。 RFC 1122では、インターネットレイヤで使われる。 パケット単位で通信を行うことにより、ネットワークの帯域を連続して占有することがなくなって、複数の端末からの送受信データを1本の信号線上に多重化出来る、データの一部が破損・喪失しても少ないコストで再送が可能になる、網状の通信路構成に適している、などの利点がある。.

新しい!!: G.729.1とパケット · 続きを見る »

ビットレート

電気通信やコンピューティングにおいて、ビットレートまたはビット速度(ビットそくど、bit rate, bitrate)とは、単位時間あたりに転送または処理されるビット数である。変数 R として表される。 ビットレートには、通常ビット毎秒(bit/s)の単位が用いられ、キロ、メガ、ギガ、テラなどのSI接頭辞と組み合わせて使用される。非公式な略称"bps"が"bit/s"の代わりに使われることが多く、例えば"1 Mbps"は100万ビット毎秒を意味する。 1バイト毎秒(1 B/s)は8ビット毎秒に相当する。.

新しい!!: G.729.1とビットレート · 続きを見る »

ビット毎秒

ビット毎秒(ビットまいびょう)は、データ転送レート(JISの情報処理用語としてはビット速度、bit rate)の単位である。1秒間にデータ転送路上の仮想の、または物理的な地点を通過した(すなわち転送された)ビット数と定義される。モデムやルータ、シリアルATAやLANケーブルなどのデジタル通信機器で用いられる。bps(ビーピーエス、bit per second、ビットパーセカンド)とも。.

新しい!!: G.729.1とビット毎秒 · 続きを見る »

フレーム

フレーム、フレイム.

新しい!!: G.729.1とフレーム · 続きを見る »

ベクトル量子化

ベクトル量子化(ベクトルりょうしか、Vector Quantization, VQ)は、情報理論における量子化の手法のことである。正確には一つの手法ではなく以下に述べる概念をもつ手法の総称である。.

新しい!!: G.729.1とベクトル量子化 · 続きを見る »

利得 (電気工学)

利得(りとく、)とは、電気回路における入力と出力の比のことである。英語のままゲインとも呼ばれる。 一般的な利得という言葉と異なり、出力の方が入力よりも小さい場合も利得と呼ぶ。その場合、利得を1より小さい値で表す。デシベルならば0dB以下となる。.

新しい!!: G.729.1と利得 (電気工学) · 続きを見る »

周波数領域

周波数領域(しゅうはすうりょういき、Frequency domain)とは、関数や信号を周波数に関して解析することを意味する用語。 大まかに言えば、時間領域のグラフは信号が時間と共にどう変化するかを表すが、周波数領域のグラフは、その信号にどれだけの周波数成分が含まれているかを示す。また、周波数領域には、各周波数成分の位相情報も含まれ、それによって各周波数の正弦波を合成することで元の信号が得られる。 周波数領域の解析では、フーリエ変換やフーリエ級数を使って関数を周波数成分に分解する。これは、任意の波形が正弦波の合成によって得られるというフーリエ級数の概念に基づいている。 実際の信号を周波数領域で視覚化するツールとしてスペクトラムアナライザがある。.

新しい!!: G.729.1と周波数領域 · 続きを見る »

アルゴリズム

フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 アルゴリズム(algorithm )とは、数学、コンピューティング、言語学、あるいは関連する分野において、問題を解くための手順を定式化した形で表現したものを言う。算法と訳されることもある。 「問題」はその「解」を持っているが、アルゴリズムは正しくその解を得るための具体的手順および根拠を与える。さらに多くの場合において効率性が重要となる。 コンピュータにアルゴリズムをソフトウェア的に実装するものがコンピュータプログラムである。人間より速く大量に計算ができるのがコンピュータの強みであるが、その計算が正しく効率的であるためには、正しく効率的なアルゴリズムに基づいたものでなければならない。.

新しい!!: G.729.1とアルゴリズム · 続きを見る »

コーデック

ーデック (Codec) は、符号化方式を使ってデータのエンコード(符号化)とデコード(復号)を双方向にできる装置やソフトウェアなどのこと。 また、そのためのアルゴリズムを指す用語としても使われている。 コーデックには、データ圧縮機能を使ってデータを圧縮・伸張するソフトウェアや、音声や動画などのデータを別の形式に変換する装置およびソフトウェアが含まれる。 コーデックはもともとデータをデジタル通信回線で送受信するための装置を意味する、電気通信分野の用語であった。語源は、coder/decoderの略語である。.

新しい!!: G.729.1とコーデック · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

新しい!!: G.729.1とスペクトル · 続きを見る »

サンプリング周波数

ンプリング周波数(サンプリングしゅうはすう)は、音声等のアナログ波形を、デジタルデータにするために必要な処理である標本化(サンプリング)で、単位時間あたりに標本を採る頻度。単位はHzが一般に使われるが、sps (sample per second) を使うこともある。 サンプリングレート、サンプルレートとも呼ばれる。.

新しい!!: G.729.1とサンプリング周波数 · 続きを見る »

Code Excited Linear Prediction

Code Excited Linear Prediction(CELP、セルプ)は、1985年に米AT&Tの M.R. Schroeder と B.S. Atal が提案した音声符号化アルゴリズム。直訳すると「符号励振線形予測」。当時の既存の低ビットレートのアルゴリズム(RELP、LPC、ヴォコーダーのFS-1015など)に比べて格段に優れた音質を示した。様々な派生が生まれ(ACELP、RCELP、LD-CELP、VSELPなど)、現在最も広く使われている音声符号化アルゴリズムである。CELPはこのアルゴリズムのクラスを指す用語であり、特定のコーデックを指す用語ではない。.

新しい!!: G.729.1とCode Excited Linear Prediction · 続きを見る »

符号化

号化(ふごうか).

新しい!!: G.729.1と符号化 · 続きを見る »

相互運用性

互運用性(そうごうんようせい、interoperability)とは、さまざまなシステムや組織が連携できる (相互運用できる) 能力に関する特性である。この用語はしばしば技術システム工学の意味で用いられるが、その代わりにシステム間の性能に影響を与える社会的、政治的、組織的な要因を考慮に入れた広い意味で用いられることもある。.

新しい!!: G.729.1と相互運用性 · 続きを見る »

音声

音声(おんせい)とは人の声、すなわち人が発声器官を通じて発する音である。 基本要素として母音と子音がある。さらに、これらを細かく分類して、特定の言語で意味の違いを弁別・認識する音声の基本単位を音素といい、特定の言語に依存せずに、音声学で分類・定義する音声の基本単位を単音という。.

新しい!!: G.729.1と音声 · 続きを見る »

音声符号化

音声符号化(おんせいふごうか、speech coding)は、アナログの音声信号をデジタル符号化するための技術で、音声の性質を使ってデータ圧縮を行うことに特徴がある。音楽などの一般的なオーディオ信号を対象とするMP3などのオーディオ圧縮技術は、人間の聴覚心理学上の特性やデータの冗長性を利用して不要なデータの除去を行うが、音声符号化ではそれに加えて音声固有のモデル化を行うことができるため、さらにビットレートを下げることが可能である。 音声符号化の技術は異なった多くの分野で使われている。代表的なのは、携帯電話、衛星電話、VoIPなど通信の分野だが、暗号化、放送、記録(Blu-ray Discなど)の分野や音声応答システムなどの音声処理の分野などで使用されている。.

新しい!!: G.729.1と音声符号化 · 続きを見る »

音質

音質(おんしつ、sound quality)とは音や声の品質を表し、多くの場合電子機器などのオーディオ出力や音声出力の良し悪しの意味で用いられる。品質の内容はアプリケーションにより異なり、高音質のオーディオ機器では聴感上の原音への近さが、電話では明瞭度や了解度が重要になる。 音質は、人間が実際に音を聞いて判断する主観評価や、音の何らかの性質を測定して決める客観評価で定量化することができる。 音の物理的特性だけではなく人間の聴覚システムの特性が音質に大きな影響を与えるため、主観評価が音質評価の基本になるが、多くの評価者や専用の評価設備が必要で時間・コスト共に掛かり環境や評価者による評価のばらつきがあるため、音の物理的特性から主観評価値を推定する様々な客観品質評価法が研究されている。.

新しい!!: G.729.1と音質 · 続きを見る »

G.711

G.711はCCITT(現在のITU-T)によって策定された音声符号化の規格で、1972年に制定された。符号化方式は非線形パルス符号変調であり、標本化周波数は8000Hzである。固定電話網内の音声信号の伝送などに広く用いられている。.

新しい!!: G.729.1とG.711 · 続きを見る »

G.722

G.722は、48kbit/s、56kbit/s、64kbit/s の広帯域音声コーデックの ITU-T による勧告である。このコーデックは技術的には帯域分割ADPCMに基づいている。 G.722.1 はより低いビットレートの圧縮を提供する。もっと最近の派生である G.722.2 は AMR-WB (Adaptive Multiple Wideband) とも呼ばれ、さらに低いビットレートの圧縮を提供し、同時にネットワーク構成の変化に素早く適応して圧縮率を変化させることができる。後者の場合、ネットワーク輻輳がひどいときに自動的に帯域幅を保持する。輻輳状態が通常に戻ると、圧縮率を低くし、より高品質のビットレートに復帰する。 G.722 とその派生のサンプリング周波数は 16kHz と、それまでの電話用インタフェースの2倍であり、音質が格段に向上している。.

新しい!!: G.729.1とG.722 · 続きを見る »

G.722.1

G.722.1は ITU-T が勧告した広帯域音声符号化方式で、通常の電話インタフェースの2倍の帯域幅を持つ 50 Hz-7 kHz(サンプリング周波数 16kHz)の音声信号を 24 kbit/s、32 kbit/s に符号化できる。この規格は G.722 から派生したもので、G.722と同じ広帯域の音声をより低いビットレートで符号化できる。主にテレビ会議システムや VoIP 用に利用されている。 G.722.1の正式な名称はLow-complexity coding at 24 and 32 kbit/s for hands-free operation in systems with low frame loss(低フレーム消失のシステムにおけるハンズフリー用途向け24および32kbit/sの低複雑度符号化方式)である。 G.722.1 Annex C(あるいは G.722.1C)は G.722.1 から派生した拡張モードで、 G.722.1 の倍の 14 kHz(サンプリング周波数 32kHz)の音声信号を 24、32、48 kbit/s に符号化できる。この拡張の正式な名称はAnnex C - 14 kHz mode at 24, 32, and 48 kbit/s(アネックスC - 24、32、48 kbit/s の 14 kHz モード)である。.

新しい!!: G.729.1とG.722.1 · 続きを見る »

G.723

G.723 は、広帯域の音声コーデックのITU-T標準規格の一つ。G.721 適応的差分パルス符号変調の拡張であり、24 kbit/s と 40 kbit/s の仕様が定義されている。 G.726 で置き換えられ、現在では使われていない。 G.723.1 は全く異なるコーデックである。.

新しい!!: G.729.1とG.723 · 続きを見る »

G.723.1

G.723.1 は、特に話声向けに最適化された音声コーデックであり、音声を30ミリ秒単位のフレームで圧縮する。アルゴリズム上の先読みが7.5ミリ秒なので、アルゴリズムによる遅延は全体で37.5ミリ秒である。 なお、G.723とは全く異なるコーデックである。 G.723.1 のビットレートは以下の2種類がある。.

新しい!!: G.729.1とG.723.1 · 続きを見る »

G.726

G.726 とは、ADPCM音声コーデックのITU-T勧告であり、音声を 16kbit/s、24kbit/s、32kbit/s、40kbit/s のレートで転送する規格である。G.721(32kbit/s ADPCM 規格)と G.723(24kbit/s、40kbit/s ADPCM 規格)の後継として策定された。G.726 では新たに 16kbit/s のレートを定義している。G.726 の4種類のレートは、標本のビットサイズで参照されることが多く、順に2ビット、3ビット、4ビット、5ビットである。 最もよく利用されるモードは 32kbit/s である。これは G.711 の半分のレートなので、利用可能なネットワーク容量が100%増加する。主に国際電話網で使われている。DECTコードレス電話規格でも標準コーデックとして採用しており、キヤノンのデジタルカメラの一部機種でも利用している。.

新しい!!: G.729.1とG.726 · 続きを見る »

G.729

G.729 は、人の声を対象とした音声圧縮アルゴリズムであり、パケット化されたデジタル音声を10ミリ秒の遅延で圧縮する。音楽や DTMF トーンは、RFC 2833 で規定されている RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals を使う場合のみ、このコーデックで確実に転送できる。しかし 14,400 bit/s の標準の G3 ファックスは G.720 コーデックでは確実な転送は期待できず、VoIP では通常 G.711 を使う。ネットワーク負荷が高く、パケット喪失が発生した場合、アナログのファックスは信頼できなくなる。この解決策として T.38 ファックスが提案されている。 必要とする帯域幅が狭いため、G.729 は特に VoIP でよく利用されている。標準の G.729 のビットレートは 8 kbit/s だが、拡張版では 6.4 kbit/s と 11.8 kbit/s があり、それぞれ若干悪い通話品質と若干良い通話品質を提供する。 G.729 にはいくつかの企業のソフトウェア特許が使われており、SIPRO Lab Telecom がライセンスしている。いくつかの国でG.729 を使う際、ライセンス料や特許使用料を支払う必要がある。 2017年1月以来、G.729はSIPRO Lab Telecomによって宣言されたロイヤリティフリーです。 これでライセンス料を払うことなく使用できます。.

新しい!!: G.729.1とG.729 · 続きを見る »

Internet Engineering Task Force

The Internet Engineering Task Force(IETF、インターネット技術タスクフォース) はインターネットで利用される技術の標準を策定する組織である。 極めてオープンな組織で、実際の作業を行っている作業部会 (Working group; WG) のメーリングリストに参加することで、誰でも議論に参加することが可能となっている。 通常はメーリングリスト上で議論が進むが、年に3回(2回はアメリカ国内、1回はそれ以外の国)会議が開催される。この会議も参加費を払うことでだれでも参加が可能である。日本国内では2002年に横浜(パシフィコ横浜)で開催され、2009年11月には広島で開催された。また、2015年11月に再び横浜で開催されることが決定している。会議では、最終的に何か決定を下さなければならない場合にハミング(鼻歌)による表決(ラフコンセンサス)を取るという特徴がある。 策定された標準仕様は最終的にはRFCなどとして発行する。.

新しい!!: G.729.1とInternet Engineering Task Force · 続きを見る »

IPネットワーク

IPネットワークまたはIP網(アイピーもう)は、インターネット・プロトコル・スイート技術を利用して相互接続されたコンピュータネットワークを意味する。これは、広義の「インターネット」(一般名詞、"an internet"英語圏では世間への普及にともない、"the Internet"(狭義のインターネット)を "the internet" (小文字)と書くようになっている。) と等しい。 なお、狭義の「インターネット」(固有名詞、"the Internet") は全世界規模で構築されている、インターネット・プロトコルによるネットワークを相互接続して構築されたARPANETを前身とする特定の世界的規模のネットワークを指す。 広義のインターネットについて、当該ネットワークの性格や用途や固有の識別(例えば社内ネットワークであるイントラネット、異なる企業間のネットワークであるエクストラネット、NTT東日本・西日本の地域IP網やNGN、KDDIのかつてのCDNなど)を特定せず、一般化した呼称として用いる。.

新しい!!: G.729.1とIPネットワーク · 続きを見る »

ITU-T

ITU-T(International Telecommunication Union Telecommunication Standardization Sector) は、国際電気通信連合の部門の一つで、通信分野の標準策定を担当する「電気通信標準化部門」。旧CCITT(Comite Consultatif International Telegraphique et Telephonique、国際電信電話諮問委員会)。 勧告という形が標準となる。4年に1回開催される世界電気通信標準化会議(World Telecommunication Standardization Assembly、WTSA)で活動が決められる。 以前はTSS、ITU-TSまたはITU-TSSとも言った。.

新しい!!: G.729.1とITU-T · 続きを見る »

Real-time Transport Protocol

Real-time Transport Protocol(リアルタイム トランスポート プロトコル、RTP)は、音声や動画などのデータストリームをリアルタイムに配送するためのデータ通信プロトコルである。.

新しい!!: G.729.1とReal-time Transport Protocol · 続きを見る »

VoIP

1140E VoIP Phone アバイア Voice over Internet Protocol(ボイス オーバー インターネット プロトコル、VoIP(ブイ オー アイピー、ボイップ、ボイプ)、Voice over IP(ボイス オーバー アイピー))とは、音声を各種符号化方式で符号化および圧縮し、パケットに変換したものをIP(Internet Protocol: インターネットプロトコル)ネットワークでリアルタイム伝送する技術である。Voice over Frame Relay (VoFR) ・Voice over ATM (VoA) などと同じVoice over Packet Network (VoPN) の一種。 この項では「VoIP」の技術とIP電話の網構成を記述する。その他については関連項目も参照のこと。.

新しい!!: G.729.1とVoIP · 続きを見る »

時間領域

時間領域(じかんりょういき、Time domain)とは、数学的関数、物理的信号、経済学やのデータ等の時間についての解析を意味する用語である。 時間領域には、信号あるいは関数値が連続的な実数で表される連続時間と、ある間隔で値が示される離散時間がある。オシロスコープは、実世界の信号を時間領域で視覚化するツールである。 時間領域のグラフは、時間によって信号がどう変化するかを示し、周波数領域のグラフは、それぞれの周波数帯域にどれだけの信号が存在するかを示す。.

新しい!!: G.729.1と時間領域 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »