ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

フェリックス・クライン

索引 フェリックス・クライン

フェリックス・クリスティアン・クライン(Felix Christian Klein, 1849年4月25日 - 1925年6月22日)は、ドイツの数学者。群論と幾何学との関係、関数論などの発展に寄与した。クラインの壺の考案者。ダフィット・ヒルベルトやアンリ・ポアンカレといった次の世代の数学者に影響を与えた。.

97 関係: うつ病単位元向き多様体大西正男変換 (数学)学問寺阪英孝射影変換射影幾何学射影線型群不変量一意化定理平行移動幾何学幾何化予想位相幾何学微分幾何学微分方程式ミュンヘン工科大学マックス・デーンポアンカレ予想ユークリッドの運動群ユークリッド幾何学ライン・フリードリヒ・ヴィルヘルム大学ボンライプツィヒ大学リーマン幾何学ルートヴィヒ・ビーベルバッハヴァイマル共和政プロイセン州プロイセン王国デュッセルドルフフランク・ネルソン・コールフランスフリードリヒ・アレクサンダー大学エアランゲン=ニュルンベルクフィリップ・フルトヴェングラーフェルディナント・フォン・リンデマンド・モルガン・メダルドイツドイツ連邦ホモトピー群ダフィット・ヒルベルトベルンハルト・リーマンベッチ数アンリ・ポアンカレアドルフ・フルヴィッツエルランゲン・プログラムエドワード・カスナーオイラー標数カール・フリードリヒ・ガウス...クラインの壺クラインの四元群ゲッティンゲンゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲルゲオルク・アウグスト大学ゲッティンゲンコプリ・メダルソフス・リー公理回転図形王立協会科学アカデミー (フランス)空間群 (数学)群論遠山啓鏡映面積複素多様体複素解析角度長さ集合集合論連結空間林鶴一恒等写像渡辺弘数学数学者教育大臣曲面普仏戦争1849年1875年1878年1880年1881年1882年1885年1886年1907年1912年1913年1925年4月25日6月22日 インデックスを展開 (47 もっと) »

うつ病

うつ病(うつびょう、鬱病、欝病、Clinical Depression)は、気分障害の一種であり、抑うつ気分、意欲・興味・精神活動の低下、焦燥(しょうそう)、食欲低下、不眠、持続する悲しみ・不安などを特徴とした精神障害である。 『精神障害の診断と統計マニュアル』第5版 (DSM-5) には、うつ病の診断名と大うつ病性障害(だいうつびょうせいしょうがい、Major depressive disorder)が併記されており、この記事では主にこれらについて取り上げる。これは1日のほとんどや、ほぼ毎日、2、3週間は抑うつであり、さらに著しい機能の障害を引き起こすほど重症である場合である。1 - 2年続く死別の反応、経済破綻、重い病気への反応は理解可能な正常な反応である場合がある。 有病者数は世界で3.5億人ほどで一般的であり、世界の障害調整生命年(DALY)において第3位(4.3%)に位置づけられる。しかし多くの国にて治療につながっておらず、先進国であろうと適切にうつ病と診断されていない事が多く、その一方ではうつ病と誤診されたために間違った抗うつ薬投与がなされている。WHOはうつ病の未治療率を56.3%と推定し(2004年)、mhGAPプログラムにて診療ガイドラインおよびクリニカルパスを公開している。.

新しい!!: フェリックス・クラインとうつ病 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: フェリックス・クラインと単位元 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: フェリックス・クラインと向き · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: フェリックス・クラインと多様体 · 続きを見る »

大西正男

大西 正男(おおにし まさお、1910年10月12日 - 1987年9月18日)は、日本の政治家。.

新しい!!: フェリックス・クラインと大西正男 · 続きを見る »

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: フェリックス・クラインと変換 (数学) · 続きを見る »

学問

学問(がくもん)とは、一定の理論に基づいて体系化された知識と方法であり、哲学や歴史学、心理学や言語学などの人文科学、政治学や法律学などの社会科学、物理学や化学などの自然科学などの総称。英語ではscience(s)であり、science(s)は普通、科学と訳す。なお、学問の専門家を一般に「学者」と呼ぶ。研究者、科学者と呼ばれる場合もある。.

新しい!!: フェリックス・クラインと学問 · 続きを見る »

寺阪英孝

寺阪 英孝(てらさか ひでたか、1904年1月27日 - 1996年4月3日)は日本の数学者。専攻は幾何学。大阪大学名誉教授、理学博士(1938年)。正四位勲二等瑞宝章。 幾何学基礎論の研究者。また、1957年以来、結び目理論の研究をおこなっている。趣味は、絵画鑑賞と植物を育て賞でること。.

新しい!!: フェリックス・クラインと寺阪英孝 · 続きを見る »

射影変換

射影幾何学において、n 次元射影空間の射影変換とは、射影空間の同型写像である。.

新しい!!: フェリックス・クラインと射影変換 · 続きを見る »

射影幾何学

数学における射影幾何学(しゃえいきかがく、projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 こういった考え方は古くからあったものだが、射影幾何学として発展するのは主に19世紀のことである。多くの研究が取りまとめられ、射影幾何学は当時の幾何学の最も代表的な分野となった。ここでいう射影幾何学は、座標系(斉次座標系)の各成分が複素数となる複素射影空間についての理論である。そしていくつかのより抽象的な数学の系譜(例えば不変式論、代数幾何学イタリア学派、あるいは古典群の研究へつながるフェリックス・クラインのエルランゲン・プログラムなど)が射影幾何学を礎として打ち立てられていった。これらの主題に関わった多くの研究者は、肩書きとしては総合幾何学 (synthetic geometry) に属する研究者である。他にも、射影幾何学の公理的研究から生まれた研究分野として有限幾何学がある。 射影幾何学自体も現在では多くの研究分野へ細分化が進んでおり、主なものとしては、射影代数幾何学(射影代数多様体の研究)と射影微分幾何学(射影変換に関する微分不変量の研究)の二つを挙げることができるだろう。.

新しい!!: フェリックス・クラインと射影幾何学 · 続きを見る »

射影線型群

数学における射影線型群(しゃえいせんけいぐん、projective linear group)あるいは射影一般線型群(しゃえいいっぱんせんけいぐん、projective general linear group)とは一般線型群の中心による剰余群のことである。 同様に、射影特殊線型群(しゃえいとくしゅせんけいぐん、projective special linear group)とは特殊線型群の中心による剰余群のことである。 有限体上の射影特殊線型群はほとんどの場合に非可換有限単純群となる。 これらの群は射影空間に忠実に作用する。.

新しい!!: フェリックス・クラインと射影線型群 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: フェリックス・クラインと不変量 · 続きを見る »

一意化定理

一意化定理(uniformization theorem)とは、すべての単連結リーマン面は、開円板、複素平面、リーマン球面の 3つのうちのひとつに共形同値であるという定理である。特に、単連結リーマン面は(constant curvature)のリーマン計量を持つ。この定理は普遍被覆リーマン面を楕円型(正の曲率、正の曲がった曲率をもつ)、放物型(平坦)、双曲型(負曲率)として分類する。 一意化定理はリーマンの写像定理の平面の固有な単連結開部分集合から、任意の単連結はリーマン面への一般化である。 一意化定理は、任意の連結である第二可算の面の同様な結果、定数曲率のリーマン計量を与えることができることを意味している。.

新しい!!: フェリックス・クラインと一意化定理 · 続きを見る »

平行移動

ユークリッド幾何学における平行移動(へいこういどう、translation)は全ての 点を決まった方向に一定の距離だけ動かす写像である。 物理学における平行移動は並進運動 (translational motion) と呼ばれる。.

新しい!!: フェリックス・クラインと平行移動 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: フェリックス・クラインと幾何学 · 続きを見る »

幾何化予想

幾何化予想(きかかよそう、Geometrization conjecture)は、1982年にアメリカの数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題。位相幾何学と微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年、グリゴリー・ペレルマンによるリッチフローを用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。.

新しい!!: フェリックス・クラインと幾何化予想 · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: フェリックス・クラインと位相幾何学 · 続きを見る »

微分幾何学

数学における微分幾何学(びぶんきかがく、ドイツ語: Differentialgeometrie、英語:differential geometry)とは微分を用いた幾何学の研究である。また、可微分多様体上の微分可能な関数を取り扱う数学の分野は微分位相幾何学(びぶんいそうきかがく、ドイツ語: Differentialtopologie、英語: differential topology)とよばれることがある。微分方程式の研究から自然に発生したこれらの分野は互いに密接に関連しており、特に一般相対性理論をはじめとして物理学に多くの応用がある。これらは可微分多様体についての幾何学を構成しているが、力学系の視点からも直接に研究される。.

新しい!!: フェリックス・クラインと微分幾何学 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: フェリックス・クラインと微分方程式 · 続きを見る »

ミュンヘン工科大学

ミュンヘン工科大学メインキャンパス 上空から見たミュンヘン工科大学(こげ茶色の建物のあるエリアがキャンパス) ミュンヘンキャンパス内にあるすり鉢状の巨大円形講義室。あだ名はアウディマックス。 数学ならびにコンピュータサイエンス学科の校舎内にある巨大滑り台 ガーヒングキャンパス内にある機械工学部 1900年に印刷された同大学のリトグラフ版画 ミュンヘン工科大学(ミュンヘンこうかだいがく、Technische Universität München, 略称:TUM)は、ドイツのミュンヘンにある大学の一つ。.

新しい!!: フェリックス・クラインとミュンヘン工科大学 · 続きを見る »

マックス・デーン

マックス・ヴィルヘルム・デーン(Max Wilhelm Dehn, 1878年11月13日 - 1952年6月27日)はドイツの数学者。ダフィット・ヒルベルトの弟子であり、晩年はアメリカ合衆国に移った。 幾何学、トポロジー及び幾何学的群論における業績で有名。弟子にO-H. ケラー、R. ムーファンク、ヴィルヘルム・マグヌス、ドロテア・ロックバーン等がいる。.

新しい!!: フェリックス・クラインとマックス・デーン · 続きを見る »

ポアンカレ予想

予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は というものである。2018年6月現在、7つのミレニアム懸賞問題のうち唯一解決されている問題である。.

新しい!!: フェリックス・クラインとポアンカレ予想 · 続きを見る »

ユークリッドの運動群

数学におけるユークリッド群(ユークリッド-ぐん、Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 -次元ユークリッド空間の運動群は や などとも表される。; 三次元までの等長変換についての概観 は の任意の元が螺旋変位であることを主張する。.

新しい!!: フェリックス・クラインとユークリッドの運動群 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: フェリックス・クラインとユークリッド幾何学 · 続きを見る »

ライン・フリードリヒ・ヴィルヘルム大学ボン

ライン・フリードリヒ・ヴィルヘルム大学ボン(Universität Bonn)は、ドイツのボンにある総合大学。通称はボン大学。 以降、本項では「ボン大学」と呼称する。.

新しい!!: フェリックス・クラインとライン・フリードリヒ・ヴィルヘルム大学ボン · 続きを見る »

ライプツィヒ大学

ライプツィヒ大学(Universität Leipzig)は、ドイツのザクセン州ライプツィヒにある大学。東ドイツ(ドイツ民主共和国)時代はカール・マルクス大学と呼ばれていた。.

新しい!!: フェリックス・クラインとライプツィヒ大学 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: フェリックス・クラインとリーマン幾何学 · 続きを見る »

ルートヴィヒ・ビーベルバッハ

ルートヴィヒ・ビーベルバッハ(Ludwig Georg Elias Moses Bieberbach、1886年12月3日 - 1982年9月1日)は、ドイツの数学者。.

新しい!!: フェリックス・クラインとルートヴィヒ・ビーベルバッハ · 続きを見る »

ヴァイマル共和政

ワイマール共和制下の自治体 ヴァイマル共和政(ヴァイマルきょうわせい、Weimarer Republik)は、1919年に発足して1933年に事実上崩壊した戦間期のドイツ国の政体。政治体制は1919年8月に制定・公布されたヴァイマル憲法に基づいている。ヴァイマル共和国、ワイマール共和政、ワイマール共和国などとも訳される。 ヴァイマル共和政下における正式な国号は、ドイツ社会民主党などが提案し、後に日本を始め他国の言語での翻訳でも実際に多く用いられた「ドイツ共和国(Deutsche Republik)」が拒否されたため、帝政時代からの正式な国号である「ドイツ国(Deutsches Reich、ドイチェス・ライヒ)」が引き続き用いられた。首都も帝政時代と同じくベルリンであり、ヴァイマルが首都であったわけではない。 憲法の社会政策と第一次世界大戦の賠償両面で財源を確保すべく、独占により産業合理化を推進した。合理化のため、アメリカ・イギリス・フランスから巨額の短期資本を導入し、銀行は長期貸しを行った。世界恐慌が起こるや否や短資は流出してしまい、その支払のため発行された手形が再割引きに出された。こうしてライヒスバンクは、1930年から1932年にかけて、地金・外貨準備の1/3を失った。失業者の数は1929年秋の約200万から翌年秋に倍の400万となり、1932年夏に600万となった。失業保険の過酷な受給要件が、1932年平均で受給者割合を2割に抑えた。 1924-1930年(この記事でいう合理化景気の時代)にNY市場で発行されたドル建て外債は、ドーズ公債とヤング公債の主幹事であったJPモルガンをはじめとして、諸邦債がブラウン・ブラザーズ・ハリマンやシティバンク、ゴールドマン・サックスやディロン・リードに発行されていた。.

新しい!!: フェリックス・クラインとヴァイマル共和政 · 続きを見る »

プロイセン州

プロイセン自由州、もしくはプロイセン州(独:Freistaat Preußen)は、ドイツ国の州の一つ。.

新しい!!: フェリックス・クラインとプロイセン州 · 続きを見る »

プロイセン王国

プロイセン王国(プロイセンおうこく、Königreich Preußen)は、ホーエンツォレルン家の君主が統治したヨーロッパの王国。現在のドイツ北部からポーランド西部にかけてを領土とし、首都はベルリンにあった。 プロイセンの語源となったプルーセンはドイツ騎士団に征服され、1224年にドイツ騎士団国が作られた。ドイツ騎士団国は1525年にプロシア公領ないしプロイセン公国となる。1618年、公国はブランデンブルク選帝侯領とともに、同君連合であるブランデンブルク=プロイセンを構成した。君主フリードリヒ・ヴィルヘルムは、オランダ総督との姻戚関係によって威勢を増した。1701年にプロイセン王国となった。王国は北ドイツ連邦の盟主となるまで軍事国家として成長し続け、普仏戦争に勝利した。そのときプロイセンを盟主とするドイツ帝国ができた。1918年からドイツ革命によりヴァイマル共和政のプロイセン州となった。(#歴史).

新しい!!: フェリックス・クラインとプロイセン王国 · 続きを見る »

デュッセルドルフ

ーニヒスアレー(目抜き通り) デュッセルドルフ(, )は、ドイツ連邦共和国の都市でノルトライン=ヴェストファーレン州の州都。ライン川河畔に位置し、ライン・ルール大都市圏地域の中心でルール工業地帯のすぐ南西部にある。人口は約万人。金融やファッション、世界的な見本市の中心都市の一つである。また西ヨーロッパの中でもブルーバナナと呼ばれる、経済的にも人口的にもとくに発展した地域内に位置し、市内にはフォーチュン・グローバル500に含まれる5社や、いくつかのDAXに含まれている企業が本社を置いている。日本企業の進出も盛んで、デュッセルドルフ市内には約5,000人の日本人の駐在員やその家族などが居住し、日本総領事館などのあるインマーマン通りは日本人街の様相を呈している。1971年にはデュッセルドルフ日本人学校も開校し、1990年前後には生徒数1000名近くにまで達した。2011年に行われたマーサー・ヒューマン・リソース・コンサルティングによる世界で最も居住に適した都市の調査では世界では5位、ドイツ国内では2位につけている。 デュッセルドルフは経済的な中心としてだけではなく、芸術的な分野でも知られた都市で、からはヨーゼフ・ボイスやアウグスト・マッケ、ゲルハルト・リヒター、ジグマー・ポルケ、アンドレアス・グルスキーといった画家や写真家などの芸術家を輩出している。電子音楽の先駆者で影響を与えたクラフトワークも、デュッセルドルフを起点としている。デュッセルドルフはカーニバルの開催都市としても知られている。また、毎年7月にはGrößte Kirmes am Rheinが開催され、450万人以上の人々が市内を訪れる。.

新しい!!: フェリックス・クラインとデュッセルドルフ · 続きを見る »

フランク・ネルソン・コール

フランク・ネルソン・コール(Frank Nelson Cole, Ph.D.、1861年9月20日 - 1926年5月26日)は、アメリカ合衆国の数学者である。 マサチューセッツ州に生まれ、ハーバード大学を卒業した後、1885年から1887年まで同大学で数学を教えていた。 後にミシガン大学やコロンビア大学で教職に就いた。1895年から25年間、アメリカ数学会(AMS)の事務局長を務めた。 1903年、ニューヨークで開かれたアメリカ数学会で、メルセンヌ数 M67.

新しい!!: フェリックス・クラインとフランク・ネルソン・コール · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

新しい!!: フェリックス・クラインとフランス · 続きを見る »

フリードリヒ・アレクサンダー大学エアランゲン=ニュルンベルク

250px フリードリヒ・アレクサンダー大学エアランゲン=ニュルンベルク(Friedrich-Alexander Universität Erlangen-Nürnberg, FAU)は、ドイツ・バイエルン州のエアランゲンおよびニュルンベルクにある大学である。 バイエルン州第2の規模を持ち、11の学部、265の講座を有する。学部はそのうち9学部がエアランゲンに、2学部がニュルンベルクにある。学生数は、2004/05年の冬学期の登録者で24,600名。そのうち、3分の2がエアランゲン、残りがニュルンベルクで学んでいる。海外からの留学生は、およそ2,500名程度になる。教職員は、総数で10,000名以上に及び、バイエルン州では第2位の規模を誇る。加えて、近在の専門の単科大学や各大学とも緊密な連携を持ち、バイエルン州北部では突出した地位を保持している。 2010年に大韓民国の釜山広域市に分校が設立され、2011年から毎年およそ50人の学生を受け入れている。.

新しい!!: フェリックス・クラインとフリードリヒ・アレクサンダー大学エアランゲン=ニュルンベルク · 続きを見る »

フィリップ・フルトヴェングラー

フィリップ・フルトヴェングラー フィリップ・フルトヴェングラー(Philipp Furtwängler、1869年4月21日エルツェ(ドイツ) - 1940年5月19日ウィーン(オーストリア))は、数論を究めたドイツの数学者。 1896年、ゲッティンゲン大学で三次形式に関する博士論文(Zur Theorie der in Linearfaktoren zerlegbaren ganzzahlingen ternären kubischen Formen)をフェリックス・クラインの下で著した。1912年から1938年までの学究人生のほとんどをウィーン大学で送り、クルト・ゲーデルなどを教えた。彼は半身不随であり、車椅子に乗りながら教鞭を執った。 現在、彼の名は類体論における principal ideal theorem への貢献で最もよく知られている。.

新しい!!: フェリックス・クラインとフィリップ・フルトヴェングラー · 続きを見る »

フェルディナント・フォン・リンデマン

リンデマン フェルディナント・フォン・リンデマン(Carl Louis Ferdinand von Lindemann, 1852年4月12日 - 1939年3月6日)は、ドイツの数学者である。 リンデマンはヴュルツブルク大学で教授資格を得て教職に就き、1879年からフライブルク大学教授、1883年からケーニヒスベルク大学教授、1893年にはミュンヘン大学教授を歴任して、1904年にはミュンヘン大学の学長に就任した。 リンデマンは超越数論に関するリンデマンの定理を証明し、円周率 πが超越数であることを示した。これにより、古代から多くの数学者が取り組んできた円積問題の作図が不可能だと証明した。 Category:ドイツの数学者 Category:数論学者 520412 -520412 Category:ルートヴィヒ・マクシミリアン大学ミュンヘンの教員 Category:ケーニヒスベルク大学の教員 Category:アルベルト・ルートヴィヒ大学フライブルクの教員 Category:ユリウス・マクシミリアン大学ヴュルツブルクの教員 Category:ハノーファー出身の人物 Category:1852年生 Category:1939年没 Category:数学に関する記事.

新しい!!: フェリックス・クラインとフェルディナント・フォン・リンデマン · 続きを見る »

ド・モルガン・メダル

ド・モルガン・メダル(英: De Morgan Medal)はロンドン数学会より贈られる数学賞。三年ごとの1月1日に、主にイギリス在住の数学者に授与される。同協会の最も有名な賞であり、初代会長であったオーガスタス・ド・モルガンを追悼している。.

新しい!!: フェリックス・クラインとド・モルガン・メダル · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: フェリックス・クラインとドイツ · 続きを見る »

ドイツ連邦

フランクフルトに集まった各加盟諸邦の君主たち(1863年) ドイツ連邦(ドイツれんぽう)ないしドイツ同盟(ドイツどうめい、独:Deutscher Bund)は、旧神聖ローマ帝国を構成していたドイツの35の領邦と4つの帝国自由都市との連合体。1815年のウィーン議定書に基づき、オーストリア帝国を盟主として発足、1866年の普墺戦争のプロイセン王国の勝利をもって解消された。 ドイツ連邦は、あくまでも複数の主権国家の連合体、つまり国家連合(Staatenbund)であり、連邦国家(Bundesstaat)でない。そのため、「ドイツ連合」や「ドイツ国家連合」などとも訳される(下記「訳語」の項目を参照)。.

新しい!!: フェリックス・クラインとドイツ連邦 · 続きを見る »

ホモトピー群

数学において、ホモトピー群 (homotopy group) は代数トポロジーにおいて位相空間を分類するために使われる。1次の最も簡単なホモトピー群は基本群であり、空間のについての情報がわかる。直感的には、ホモトピー群は位相空間の基本的な形、穴、についての情報を持っている。 n 次ホモトピー群を定義するために、(付き)n 次元球面から与えられた(基点付き)空間の中への基点を保つ写像はと呼ばれる同値類へと集められる。2つの写像がホモトープ (homotopic) とは、一方から他方へ連続的に変形できることをいう。これらのホモトピー類たちが基点付きの与えられた空間 X の n 次ホモトピー群 (n-th homotopy group) と呼ばれる群 n(X) をなす。異なるホモトピー群を持つ位相空間は決して同じ(同相)ではないが、逆は正しくない。 のホモトピーの概念はカミーユ・ジョルダン (Camille Jordan) によって導入された。.

新しい!!: フェリックス・クラインとホモトピー群 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: フェリックス・クラインとダフィット・ヒルベルト · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: フェリックス・クラインとベルンハルト・リーマン · 続きを見る »

ベッチ数

代数的位相幾何学において、ベッチ数 (Betti numbers) は、位相空間に対する不変量であり、自然数に値をもつ。 右の図のようなトーラスを考える。このトーラスに切り口が円周になるように切れ込みをいれたとき、その結果二つのピースに分かれない切り方が、穴のまわりにそって一周する方法と、縦に切断する方法の二通りある。このことからトーラスの 1 次ベッチ数は 2 である。直感的な言葉を使うと、ベッチ数は様々な次元の「穴」の数である。例えば、円の 1 次ベッチ数は 1であり、一般的なプレツェル(pretzel)の場合は、1 次ベッチ数は穴の数の 2 倍となる。 ベッチ数は、今日、数学のみならず計算機科学やデジタル画像などの分野でも研究されている。 「ベッチ数」ということばは、エンリコ・ベッチ (Enrico Betti) にちなみ、アンリ・ポアンカレ (Henri Poincaré) により命名された。.

新しい!!: フェリックス・クラインとベッチ数 · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: フェリックス・クラインとアンリ・ポアンカレ · 続きを見る »

アドルフ・フルヴィッツ

アドルフ・フルヴィッツ(1880年から1890年頃) アドルフ・フルヴィッツ(Adolf Hurwitz, 1859年3月26日 - 1919年11月18日)はドイツのユダヤ人数学者。 整数論、代数学、代数幾何学で業績がある。はじめミュンヘン大学でクライン、次にベルリン大学でクンマー、ワイエルシュトラス、クロネッカー等の当時を代表する数学者たちの講義に出席しドイツ数学を学んだ。 クラインに師事するために、一度ミュンヘン大学に戻り、クラインがライプツィヒ大学に異動するのに伴いライプツィヒへ、そこでクラインの指導のもと楕円モジュラー関数に関する論文で博士号を取得。 ゲッティンゲン大学を経てリンデマン(円周率\piが超越数となることの証明で著名)に誘われケーニヒスベルク大学へ。 ケーニヒスベルク大学時代にダフィット・ヒルベルトとヘルマン・ミンコフスキーを育てたことも有名。その後スイス連邦工科大学チューリヒ校の教授。 業績として、リーマン面に関する基礎的な貢献、代数曲線の種数に関するリーマン・フルヴィッツの公式。フルヴィッツのゼータ関数の発見。虚数乗法を持つ楕円モジュラー関数において非常に重要な数であるフルヴィッツ数の構成など。 楕円モジュラー関数と虚数乗法論における貢献が大きい。.

新しい!!: フェリックス・クラインとアドルフ・フルヴィッツ · 続きを見る »

エルランゲン・プログラム

ルランゲン・プログラムもしくはエアランゲン・プログラム(Erlanger Programm, Erlangen program)とは、1872年フェリックス・クラインが23歳でエルランゲン大学の教授職に就く際、幾何学とは何か、どのように研究すべきものかを示した指針である。日本語ではエルランゲン(の)目録と表記される場合もある。.

新しい!!: フェリックス・クラインとエルランゲン・プログラム · 続きを見る »

エドワード・カスナー

ドワード・カスナー(1907年) エドワード・カスナー(Edward Kasner, 1878年4月2日 - 1955年1月7日)は、アメリカ合衆国の数学者。ニューヨーク生まれ。.

新しい!!: フェリックス・クラインとエドワード・カスナー · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

新しい!!: フェリックス・クラインとオイラー標数 · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: フェリックス・クラインとカール・フリードリヒ・ガウス · 続きを見る »

クラインの壺

ラインの壺(クラインのつぼ、Klein bottle)は、境界も表裏の区別も持たない(2次元)曲面の一種で、主に位相幾何学で扱われる。 ユークリッド空間に埋め込むには4次元、曲率0とすると5次元が必要である。3次元空間には通常の方法では埋め込み不可能だが、射影して強引に埋め込むと、自己交差する3次元空間内の曲面になる。その形を壺になぞらえたものである。 ドイツの数学者フェリックス・クラインにより考案された。クラインの管、クラインの瓶とも呼ばれる。この通称は英語に翻訳する際の錯誤によるものである。原語であるドイツ語では「Kleinsche Fläche(クラインの面)」であり、これが英語に翻訳される際、Fläche(面)がFlasche(瓶)と取り違えられ、bottleと訳された。現在ではドイツ語圏でも、Kleinsche Flascheのほうで定着している。 クラインの壺は、下図のように矢印を付けた正方形の対辺を矢印の向きが合うように貼り合わせて作ることができる。 Image:Klein Bottle Folding 1.svg Image:Klein Bottle Folding 2.svg Image:Klein Bottle Folding 3.svg Image:Klein Bottle Folding 4.svg Image:Klein Bottle Folding 5.svg Image:Klein Bottle Folding 6.svg 前述のように3次元空間内に実現するためには自己交差が必要であるが、クラインの壺そのものに交差はない。そのことを強調するために自己交差の部分をぼかして図示されることがある。 表裏の区別を持たない2次元曲面には他にメビウスの帯がある。メビウスの帯が2次元のテープ状のものをひねり表をたどっていくとそのまま裏に行き着くようにしたのに対し、クラインの壺は3次元のチューブをひねり内部をたどると外部に行き着くようにしたものである。また二つのメビウスの帯をそのふちに沿って貼り合わせるとクラインの壺ができる(上の図で、ここで示した順序とは逆に、青いほうの辺を先に貼り合わせるとメビウスの帯になる)。.

新しい!!: フェリックス・クラインとクラインの壺 · 続きを見る »

クラインの四元群

ラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。 クラインの四群元の単位元以外の元の位数は、2である。 クラインの四元群の演算表は: また、交代群 A4 の正規部分群 と同型。.

新しい!!: フェリックス・クラインとクラインの四元群 · 続きを見る »

ゲッティンゲン

ッティンゲン(標準ドイツ語:Göttingen, 低ザクセン語:Chöttingen)は、ドイツ連邦共和国ニーダーザクセン州ゲッティンゲン郡に属す都市である。同州南部に位置する大学都市であり、教育・研究で強く特徴付けられる。都市名は「ゲッチンゲン」とも表記される。 ゲッティンゲンは、ハノーファー、ブラウンシュヴァイク、オスナブリュック、オルデンブルクに次ぐニーダーザクセン州で5番目に大きな都市であり、上級中心都市の機能を担っている。この街はゲッティンゲン郡の郡庁所在都市であり、同郡最大の都市である。1964年にニーダーザクセン州州議会で可決されたゲッティンゲン法により、それまでの郡独立市からゲッティンゲン郡に編入された。この都市はこれ以後も、特に定めない限り、郡独立市と同等の扱いを受けることになっている。 ゲッティンゲンは1965年に人口10万人を超え、これにより大都市となった。最寄りの大都市には、カッセル(約38km南西)、ヒルデスハイム(約70km北)、ブラウンシュヴァイク(約92km北東)、エアフルト(約98km南東)、ハノーファー(約105km北)、パーダーボルン(約120km西南西)がある。ゲッティンゲンはハノーファー=ブラウンシュヴァイク=ゲッティンゲン=ヴォルフスブルク大都市圏の南端にあたる。.

新しい!!: フェリックス・クラインとゲッティンゲン · 続きを見る »

ゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲル

ルク・ヴィルヘルム・フリードリヒ・ヘーゲル(Georg Wilhelm Friedrich Hegel, 1770年8月27日 - 1831年11月14日)は、ドイツの哲学者である。ヨハン・ゴットリープ・フィヒテ、フリードリヒ・シェリングと並んで、ドイツ観念論を代表する思想家である。18世紀後半から19世紀初頭の時代を生き、領邦分立の状態からナポレオンの侵攻を受けてドイツ統一へと向かい始める転換期を歩んだ。 シュトゥットガルトのヘーゲルハウスにあるポートレイト.

新しい!!: フェリックス・クラインとゲオルク・ヴィルヘルム・フリードリヒ・ヘーゲル · 続きを見る »

ゲオルク・アウグスト大学ゲッティンゲン

旧大講堂 大学内の風景 ゲオルク・アウグスト大学ゲッティンゲン(Georg-August-Universität Göttingen, 略称:GAU)は、ドイツのニーダーザクセン州ゲッティンゲンに位置する大学。ドイツに9つあるエクセレントセンターの一つ。ハノーファー選帝侯ゲオルク・アウグスト(英国王としてはジョージ2世)によって1737年に設立された。大学名はこの創設者にちなむものである。ゲッティンゲン大学とも通称する。.

新しい!!: フェリックス・クラインとゲオルク・アウグスト大学ゲッティンゲン · 続きを見る »

コプリ・メダル

プリ・メダル()は 科学業績に対して贈られる最も歴史の古い賞である。イギリス王立協会によって1731年に創立され、毎年贈られている。 裕福な地主で1761年に王立協会のメンバーになったゴッドフリー・コプリ卿の基金をもとに設立された。物理学、生物学の分野の研究者に贈られ、受賞者は協会のフェローあるいは外国人会員に選出される。.

新しい!!: フェリックス・クラインとコプリ・メダル · 続きを見る »

ソフス・リー

マリウス・ソフス・リー(Marius Sophus Lie, 1842年12月17日 - 1899年2月18日)は、ノルウェーの数学者 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「リー」より。ISBN 978-4-00-080309-0 C3541 。.

新しい!!: フェリックス・クラインとソフス・リー · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: フェリックス・クラインと公理 · 続きを見る »

回転

回転(廻転、かいてん、rotation)は、大きさを持たない点または大きさを持つ物体が、ある点を中心としてあるいは直線を軸として、あるいは別の物体の周りを回る運動。この点を回転中心、この直線を回転軸という。回転中心や回転軸が回転する物体の内部にある場合を特に自転というときもある。まさに運動している状態を指す場合も、運動の始状態から終状態への変化や移動を指す場合もある。前者の意味を強調したい場合は回転運動ということもある。 転じて、資金などの供給・サービス業の客の出入りなどをこう称する場合がある。.

新しい!!: フェリックス・クラインと回転 · 続きを見る »

図形

図形(ずけい、shape)は、一定の決まりによって定められる様々な形状のことであり、様々な幾何学における基本的な対象である。 ものの視覚認識によって得られる直観的な「かたち」を、まったく感覚によらず明確な定義と公理のみを用いて、演繹的に研究する論理的な学問としての幾何学の一つの典型は、ユークリッドの原論に見られる。ユークリッド幾何学においては、図形は定木とコンパスによって作図され、点、直線と円、また平面や球、あるいはそれらの部分から構成される。 1872年、クラインによって提出されたエルランゲン目録は、それまでの古典的なユークリッド幾何学、非ユークリッド幾何学、射影幾何学などの種々の幾何学に対して、変換という視点を通して統一的に記述することを目的とした。クラインのこの立場からは、図形は運動あるいは変換と呼ばれる操作に関して不変であるような性質によって記述される点集合のことであると言うことができる。 同時期にリーマンは、ガウスによって詳しく研究されていた曲面における曲率などの計量を基礎に、曲面をそれが存在する空間に拠らない一つの幾何学的対象として扱うことに成功し、リーマン幾何学あるいはリーマン多様体の概念の基礎を築いた。この立場において図形は、空間内の点集合という概念ではなく(一般には曲がったり重なったりした)空間そのものを指すと理解できる。.

新しい!!: フェリックス・クラインと図形 · 続きを見る »

王立協会

イヤル・ソサイエティ(Royal Society)は、現存する最も古い科学学会。1660年に国王チャールズ2世の勅許を得て設立された。正式名称は"The President, Council, and Fellows of the Royal Society of London for Improving Natural Knowledge"(自然知識を促進するためのロンドン王立協会)。日本語訳ではロンドン王立協会(-おうりつきょうかい)、王立学会(おうりつがっかい)など。 この会は任意団体ではあるが、イギリスの事実上の学士院(アカデミー)としてイギリスにおける科学者の団体の頂点にあたる。また、科学審議会(Science Council)の一翼をになうことによって、イギリスの科学の運営および行政にも大いに影響をもっている。1782年創立の王立アイルランドアカデミーと密接な関係があり、1783年創立のエジンバラ王立協会とは関係が薄い。.

新しい!!: フェリックス・クラインと王立協会 · 続きを見る »

科学アカデミー (フランス)

科学アカデミー(かがくアカデミー、仏:Académie des sciences)は、フランス国立の学術団体で、フランス学士院を構成する団体の一つ。フランス科学アカデミー。アカデミー・デ・シアンス。.

新しい!!: フェリックス・クラインと科学アカデミー (フランス) · 続きを見る »

空間

間(くうかん)とは、.

新しい!!: フェリックス・クラインと空間 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: フェリックス・クラインと群 (数学) · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: フェリックス・クラインと群論 · 続きを見る »

遠山啓

遠山 啓(とおやま ひらく、1909年8月21日 - 1979年9月11日)は、熊本県下益城郡(現・宇城市)出身の日本の数学者。数学教育の分野でよく知られる。.

新しい!!: フェリックス・クラインと遠山啓 · 続きを見る »

鏡映

数学における鏡映(きょうえい、reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。.

新しい!!: フェリックス・クラインと鏡映 · 続きを見る »

面積

面積(めんせき)とは、平面内の、あるいは曲面内の図形の大きさ、広さ、の量である。立体物の表面の面積の合計を特に表面積(ひょうめんせき)と呼ぶ。.

新しい!!: フェリックス・クラインと面積 · 続きを見る »

複素多様体

微分幾何学で複素多様体(ふくそたようたい、complex manifold)とは、多様体上の各点の開近傍が、Cn の中の単位開円板への正則な座標変換を持つ多様体のことを言う。座標変換が正則である場合には、Cn の中で、コーシー・リーマンの方程式の制約を受ける。 複素多様体という言葉は、上の意味で可積分複素多様体として特徴づけることができる。 One must use the open unit disk in Cn as the model space instead of Cn because these are not isomorphic, unlike for real manifolds.

新しい!!: フェリックス・クラインと複素多様体 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: フェリックス・クラインと複素解析 · 続きを見る »

角度

角度(かくど、measure of angle, angle)とは、角(かく、angle)の大きさを表す量・測度のことである。なお、一般の角の大きさは、単位の角の大きさの実数倍で表しうる。角およびその角度を表す記号としては ∠ がある。これは角記号(かくきごう、angle symbol)と呼ばれる。 単に角という場合、多くは平面上の図形に対して定義された平面角(へいめんかく、plane angle)を指し、さらに狭義にはある点から伸びる2つの半直線(はんちょくせん、ray)によりできる図形を指す。平面角の角度は、同じ端点を持つ2つの半直線の間の隔たりを表す量といえる。2つの半直線が共有する端点は角の頂点(かくのちょうてん、vertex of angle)と呼ばれ、頂点を挟む半直線は角の辺(かくのへん、side of angle)と呼ばれる。また、直線以外の曲線や面などの図形がなす角の角度も、何らかの2つの直線のなす角の角度として定義される。より広義には、角は線や面が2つ交わって、その交点や交線の周りにできる図形を指す。線や面が2つ交わって角を作ることを角をなすという。ここでいう面は通常の2次元の面に限らず、一般には超平面である。 角が現れる基本的な図形としては、たとえば三角形や四角形のような多角形(たかくけい、polygon)がある。特に三角形は平面図形における最も基本的な図形であり、すべての多角形は三角形の組み合わせによって表現することができる。また、他にも単純な性質を多く持っているため、様々な場面で応用される。有名なものは余弦定理(よげんていり、law of cosines)や、三角形の辺の比を通じて定義される三角関数(さんかくかんすう、trigonometric function)などがある。余弦定理と三角関数は、三角形の角と辺の間に成り立つ関係を示したもので、これらの関係を利用して、三角形の辺の長さからある角の大きさを求めたり、大きさが既知の角から辺の長さや長さの比を求めることができる。このことはしばしば三角形の合同条件(さんかっけいのごうどうじょうけん、congruence condition of triangles)としても言及される。 物理学など自然科学においては、量の次元が重要な役割を果たす。例えば、辺の長さや弧の長さは物理量として「長さ」の次元を持っているが、国際量体系において、角度は辺の長さの比などを通じて定義される無次元量であるとしている。角度が無次元であることは、直ちに角度が単位を持たないことを意味しない。例えば角度を表す単位としてはラジアン(らじあん、radian)や度(ど、degree)が有名である。ラジアンと度の換算は以下の式によって示される。 また、ラジアンで表された数値は単位なしの数として扱うことができる。 角度に関連する物理学の概念として、位相(いそう、phase)がある。位相は波のような周期的な運動を記述するパラメーターであり、その幾何学的な表現が角度に対応している。位相も角度と同様にラジアンが単位に用いられる。 立体的な角として立体角(りったいかく、solid angle)も定義されているが、これは上記の定義には当てはまらない。その大きさは単に立体角と呼ばれることが多く、角度と呼ばれることはほとんどない。 以下、本項目においては平面角を扱う。.

新しい!!: フェリックス・クラインと角度 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: フェリックス・クラインと長さ · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: フェリックス・クラインと集合 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: フェリックス・クラインと集合論 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: フェリックス・クラインと連結空間 · 続きを見る »

林鶴一

林 鶴一(はやし つるいち、1873年(明治6年)6月13日 - 1935年(昭和10年)10月4日)は日本の数学者、数学史家。京都帝国大学理工科大学の助教授、東北帝国大学理科大学の教授を務めた佐々木重夫。.

新しい!!: フェリックス・クラインと林鶴一 · 続きを見る »

恒等写像

数学における恒等写像(こうとうしゃぞう、identity mapping, identity function)、恒等作用素(こうとうさようそ、identity operator)、恒等変換(こうとうへんかん、identity transformation)は、その引数として用いたのと同じ値を常にそのまま返すような写像である。集合論の言葉で言えば、恒等写像は恒等関係(こうとうかんけい、identity relationである。.

新しい!!: フェリックス・クラインと恒等写像 · 続きを見る »

渡辺弘

渡辺 弘.

新しい!!: フェリックス・クラインと渡辺弘 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: フェリックス・クラインと数学 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: フェリックス・クラインと数学者 · 続きを見る »

教育大臣

教育大臣(きょういくだいじん)は、教育を担当する大臣。教育相(きょういくしょう)とも言う。.

新しい!!: フェリックス・クラインと教育大臣 · 続きを見る »

曲面

数学、特に位相幾何学における曲面(きょくめん、surface)は二次元位相多様体である。最もよく知られた曲面の例は、古典的な三次元ユークリッド空間 R3 内の立体の境界として得られる曲面である。例えば、球体の境界としての球面はそのようなものの例になっている。他方でクラインの壷などの、特異点や自己交叉を持つことなしに三次元ユークリッド空間に埋め込み不可能な曲面というものも存在する。 曲面が「二次元」であるというのは、それが二次元の座標系を入れた「座標付きのきれはし」の貼り合せになっているということを指し示している。例えば、「地球の表面」は(理想的には)二次元球面であり、経線と緯線はその球面上の二次元座標系を与えている(ただし、両極を180度子午線で結んだ部分を除く)。.

新しい!!: フェリックス・クラインと曲面 · 続きを見る »

普仏戦争

普仏戦争(ふふつせんそう、Guerre franco-allemande de 1870、Deutsch-Französischer Krieg)は、フランス第二帝政期の1870年7月19日に起こり、1871年5月10日まで続いたフランスとプロイセン王国の間で行われた戦争である。ドイツ諸邦もプロイセン側に立って参戦したため独仏戦争とも呼ぶ他、フランス側では1870年戦争と呼称する。なお、日本の世界史の教科書ではプロイセン=フランス戦争と呼称する場合もある。プロイセンは北ドイツ連邦と南ドイツのバーデン大公国・ヴュルテンベルク王国・バイエルン王国と同盟を結び圧勝した。 もともとスペイン王位継承問題でプロイセンとフランスの対立が最高潮に達していたが、ドイツ首相ビスマルクはエムス電報事件でフランスとの対立を煽り開戦させた。フランスは7月19日にプロイセンのみに宣戦したが、ドイツ諸邦はプロイセン側に立って参戦した。野戦砲と鉄道輸送を巧みに活用したプロイセン軍の精強さは、ドイツ国境に侵攻したフランス軍を叩きのめした。防戦一方となったフランス軍は9月2日にセダンの戦いで包囲に置かれ、10万人のフランス兵と皇帝ナポレオン3世が降伏した。 第二帝政は終焉を迎えて第三共和政に移行した。新たに編成されたフランス軍も帝政時代と同じくプロイセン軍に一蹴され、5ヶ月間の北フランス攻撃を経て、1871年1月28日に首都パリを占領された。1871年5月10日、フランクフルト講和条約が締結され、正式にフランスはプロイセンに降伏した。 ジャコブ・マイエール・ド・ロチルドが1817年に設立したロチルド・フレール(de Rothschild Frères ロスチャイルド兄弟とも)は、50億フランにのぼる賠償金を支払うためのシンジケートを組成した。フランスはオスマン帝国に対する膨大な債権を回収してロチルドらに返済するつもりであったが、オスマン債務管理局の利権にドイツ帝国が割りこみ東方問題に佳境をもたらした。そして新たにカリブ海問題も生まれた。.

新しい!!: フェリックス・クラインと普仏戦争 · 続きを見る »

1849年

記載なし。

新しい!!: フェリックス・クラインと1849年 · 続きを見る »

1875年

記載なし。

新しい!!: フェリックス・クラインと1875年 · 続きを見る »

1878年

記載なし。

新しい!!: フェリックス・クラインと1878年 · 続きを見る »

1880年

記載なし。

新しい!!: フェリックス・クラインと1880年 · 続きを見る »

1881年

記載なし。

新しい!!: フェリックス・クラインと1881年 · 続きを見る »

1882年

記載なし。

新しい!!: フェリックス・クラインと1882年 · 続きを見る »

1885年

記載なし。

新しい!!: フェリックス・クラインと1885年 · 続きを見る »

1886年

記載なし。

新しい!!: フェリックス・クラインと1886年 · 続きを見る »

1907年

記載なし。

新しい!!: フェリックス・クラインと1907年 · 続きを見る »

1912年

記載なし。

新しい!!: フェリックス・クラインと1912年 · 続きを見る »

1913年

記載なし。

新しい!!: フェリックス・クラインと1913年 · 続きを見る »

1925年

記載なし。

新しい!!: フェリックス・クラインと1925年 · 続きを見る »

4月25日

4月25日(しがつにじゅうごにち)はグレゴリオ暦で年始から115日目(閏年では116日目)にあたり、年末まではあと250日ある。誕生花はシャガ、モッコウバラ。.

新しい!!: フェリックス・クラインと4月25日 · 続きを見る »

6月22日

6月22日(ろくがつにじゅうににち)はグレゴリオ暦で年始から173日目(閏年では174日目)にあたり、年末まであと192日ある。誕生花はスイカズラ、アマリリス。.

新しい!!: フェリックス・クラインと6月22日 · 続きを見る »

ここにリダイレクトされます:

Felix Klein

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »