ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

DNA複製

索引 DNA複製

'''図1 DNA複製の模式図'''.青色の二本の帯が鋳型鎖(Template Strands)。2本が平行に並んでいる上部は二重らせん、斜めになって非平行になっている下部は二重らせんが解けて一本鎖となった領域である。上部と下部の境目が複製フォーク (Replication Fork) であり、二重らせん領域は時間とともに解けられていくので複製フォークは図の上側へと進行していく。下部の2本の一本鎖はそれぞれ異なる様式でDNAポリメラーゼ(DNA Polymerase、緑色)により複製され、上から見て5'から3'の左の鋳型鎖ではDNAポリメラーゼが複製フォークと同じ方向に進行し、一本のリーディング鎖 (Leading Strand) が合成される。上から見て3'から5'の右の鋳型鎖ではDNAポリメラーゼが複製フォークと逆の方向に進み、途切れ途切れにいくつもの岡崎フラグメント (Okazaki Fragments) が合成されていく。伸長が終わった岡崎フラグメントはDNAリガーゼ(DNA Ligase、ピンク)によりつなぎ合わせられ、ラギング鎖 (Lagging Strand) となる。 DNA複製(ディーエヌエイふくせい、DNA replication)は、細胞分裂における核分裂の前に、DNAが複製されてその数が2倍となる過程である。生物学ではしばしば複製 (replication) と略される。セントラルドグマの一員とされる。複製される一本鎖DNAを親鎖 (parent strand)、DNA複製によって新しく合成された一本鎖DNAを娘鎖 (daughter strand) という。また、DNA複製により生じた染色体の個々を姉妹染色分体 (sister chromatid) という。.

119 関係: ATPアーゼ半保存的複製古細菌可逆反応塩基塩基対大腸菌天然痘宿主岡崎令治岡崎フラグメント一次構造二重らせん位相幾何学体細胞化学物質化学親和力ペプチドミトコンドリアマニピュレーターマシュー・メセルソンポリメラーゼ連鎖反応ポックスウイルス科メチル化メセルソン-スタールの実験モデル生物ラミンライム病リン酸基リン酸化リボヌクレアーゼリボソームDNAループヌクレアーゼヌクレオソームトロンボーンヘリカーゼヘルペスウイルス科プライマープライマー (生物)プラスミドパルボウイルスヒドロキシ基ピュロコックス属テロメラーゼテトラピロールデオキシリボ核酸フランソワ・ジャコブファージフェニルアラニン...ホロ酵素ホスホジエステル結合ダイナミクス切断 (DNA)アーサー・コーンバーグアデノウイルスイニシエーターイソロイシンエピジェネティクスオリゴマーカテナンキナーゼキイロショウジョウバエクロマチンゲノムコレラ菌コンプレックス (曖昧さ回避)コヒーシンコピーシチジンショウジョウバエシドニー・ブレナーシアニディオシゾンスルフォロブス属セリンセントラルドグマタバコサルモネラサブユニットサイクリン哺乳類出芽酵母動物突然変異競合阻害紫外線細胞小器官細胞分裂細胞周期細胞質緑色蛍光タンパク質真核生物点突然変異生物学相同相互作用DNA修復DNAポリメラーゼDNAトポイソメラーゼDNAプライマーゼDNA超らせん遺伝子座遺伝的組換え高分子転移RNA葉緑体重合反応酵素酵母In vitroIn vivoSUMOタンパク質抗体染色 (生物学)染色体接合 (生物)枯草菌核分裂有糸分裂 インデックスを展開 (69 もっと) »

ATPアーゼ

ATPアーゼ(ATPエース、ATPase、ATPases (ion transport))とは、アデノシン三リン酸 (ATP) の末端高エネルギーリン酸結合を加水分解する酵素群の総称である(EC番号 3.6.1.3、3.6.3、3.6.4)。ATP は生体内のエネルギー通貨であるから、エネルギーを要する生物活動に関連したタンパク質であれば、この酵素の活性を持っていることが多い。 日本語ではATPアーゼを「アデノシン三リン酸分解酵素」などと表現できる。なお、「ホスファターゼ」は「リン酸分解酵素」のことであるから、「アデノシン三リン酸ホスファターゼ」という呼び方は「リン酸」の重言となり、正しくない。.

新しい!!: DNA複製とATPアーゼ · 続きを見る »

半保存的複製

半保存的複製(はんほぞんてきふくせい、Semiconservative replication)は、DNAの複製の様式を表す言葉。二重鎖の片方を鋳型とし、もう片方を新たに作り上げることで複製が行われる。.

新しい!!: DNA複製と半保存的複製 · 続きを見る »

古細菌

古細菌(こさいきん、アーキア、ラテン語:archaea/アルカエア、単数形:archaeum, archaeon)は、生物の分類の一つで、''sn''-グリセロール1-リン酸のイソプレノイドエーテル(他生物はsn-グリセロール3-リン酸の脂肪酸エステル)より構成される細胞膜に特徴付けられる生物群、またはそこに含まれる生物のことである。古"細菌"と名付けられてはいるが、細菌(バクテリア。本記事では明確化のため真正細菌と称する)とは異なる系統に属している。このため、始原菌(しげんきん)や後生細菌(こうせいさいきん)という呼称が提案されたが、現在では細菌や菌などの意味を含まない を音写してアーキアと呼ぶことが多くなっている。 形態はほとんど細菌と同一、細菌の一系統と考えられていた時期もある。しかしrRNAから得られる進化的な近縁性は細菌と真核生物の間ほども離れており、現在の生物分類上では独立したドメインまたは界が与えられることが多い。一般には、メタン菌・高度好塩菌・好熱好酸菌・超好熱菌など、極限環境に生息する生物として認知されている。.

新しい!!: DNA複製と古細菌 · 続きを見る »

可逆反応

可逆反応(かぎゃくはんのう 独: reversible Reaktion、英:reversible reaction)とは、化学反応のうち、始原系(原料)から生成系(生成物)への反応(正反応)と、反対に生成系から始原系に戻る反応(逆反応またはレトロ反応)がともに起こる反応のことである。ある系においてそれらの正、逆反応しか起こらなければ、その系は最終的に一定量の基質と生成物を含む平衡状態に落ち着く。その場合、正反応と逆反応の速度定数の比が平衡定数となる。 可逆反応とは反対に、正反応のみが起こり逆反応が起こらない反応を、不可逆反応と呼ぶ。 可逆反応は始原系と生成系のエネルギー差が小さく、活性化エネルギーが低い場合に起こる。可逆反応を化学反応式で表すときは、始原系と生成系の間に右向きの片矢印と左向きの片矢印を上下に重ねて書く。例として、アンモニアとアンモニウムイオンとの間の酸塩基反応を示す。 アンモニアの酸塩基反応: ある系が可逆反応により一定の平衡状態となってしまうと、基質がいつまでも残ってしまう状況に陥ることがある。それを解決して生成物を効率良く得るために、生成物を系外に除去する工夫をしたり、複数の基質のうちの一方を溶媒などとして大過剰量で用いたりすることで、平衡を生成物側に偏らせる手法がとられる。 ある反応で複数の生成物が得られる可能性があり、その生成比が、生成物、反応中間体、基質のいずれか、あるいはいくつかを含む可逆反応の平衡定数で決定される場合、そのような選択性を熱力学的支配による選択性、という。.

新しい!!: DNA複製と可逆反応 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: DNA複製と塩基 · 続きを見る »

塩基対

塩基対(えんきつい、base pair、bp)とは、デオキシリボ核酸の2本のポリヌクレオチド分子が、アデニン (A) とチミン (T)(もしくはウラシル (U))、グアニン (G) とシトシン (C) という決まった組を作り、水素結合で繋がったもの。この組み合わせはジェームズ・ワトソンとフランシス・クリックが発見したもので、「ワトソン・クリック型塩基対」「天然型塩基対」と言う。DNA や RNA の場合、ワトソン・クリック型塩基対が形成しさらに隣り合う塩基対の間に疎水性相互作用がはたらくことが、二重らせん構造が安定化する駆動力となっている。 これに対して、DNAが三重鎖を作るときなどには「フーグスティーン型塩基対」という別のパターンの塩基対も現れる。テロメア配列が持つ四重鎖構造、G-カルテットもフーグスティーン型の構造をとっている。さらに人工的に合成したATGC以外の塩基を使って、特別な塩基対を作り出すことも可能である。 インターカレーションとは、平面状の部位を持つ有機分子(インターカレーター)が、2個の塩基対の間にその平面部位を挿入する現象を指す。臭化エチジウムはインターカレーターの代表例である。.

新しい!!: DNA複製と塩基対 · 続きを見る »

大腸菌

大腸菌(だいちょうきん、学名: Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。この菌は腸内細菌でもあり、温血動物(鳥類、哺乳類)の消化管内、特にヒトなどの場合大腸に生息する。アルファベットで短縮表記でとすることがある(詳しくは#学名を参照のこと)。大きさは通常短軸0.4-0.7μm、長軸2.0-4.0μmだが、長軸が短くなり球形に近いものもいる。 バクテリアの代表としてモデル生物の一つとなっており、各種の研究で材料とされるほか、遺伝子を組み込んで化学物質の生産にも利用される(下図)。 大腸菌はそれぞれの特徴によって「株」と呼ばれる群に分類することができる(動物でいう品種のような分類)。それぞれ異なる動物の腸内にはそれぞれの株の 大腸菌が生息していることから、環境水を汚染している糞便が人間から出たものか、鳥類から出たものかを判別することも可能である。大腸菌には非常に多数の株があり、その中には病原性を持つものも存在する。.

新しい!!: DNA複製と大腸菌 · 続きを見る »

天然痘

天然痘(てんねんとう、smallpox)は、天然痘ウイルス(Variola virus)を病原体とする感染症の一つである。疱瘡(ほうそう)、痘瘡(とうそう)ともいう。医学界では一般に痘瘡の語が用いられた。疱瘡の語は平安時代、痘瘡の語は室町時代、天然痘の語は1830年の大村藩の医師の文書が初出である。非常に強い感染力を持ち、全身に膿疱を生ずる。致死率が平均で約20%から50%と非常に高い。仮に治癒しても瘢痕(一般的にあばたと呼ぶ)を残す。天然痘は世界で初めて撲滅に成功した感染症である。1805年にはナポレオンが、全軍に種痘を命じた。以降は羊毛の流通に乗って発疹チフスが猛威をふるった。.

新しい!!: DNA複製と天然痘 · 続きを見る »

宿主

宿主(しゅくしゅ、英語:host)あるいは寄主(きしゅ)とは、寄生虫や菌類等が寄生、又は共生する相手の生物。口語では「やどぬし」と訓読されるが、学術用語としては「しゅくしゅ」読みが正式である。.

新しい!!: DNA複製と宿主 · 続きを見る »

岡崎令治

岡崎 令治(おかざき れいじ、1930年10月8日 - 1975年8月1日)は、日本の分子生物学者。広島市白島(現中区白島)出身。.

新しい!!: DNA複製と岡崎令治 · 続きを見る »

岡崎フラグメント

岡崎フラグメント(おかざきフラグメント)は、DNA複製におけるラギング鎖の合成時にDNAプライマーゼとDNAポリメラーゼIIIによって形成される比較的短いDNA断片(フラグメント)である。.

新しい!!: DNA複製と岡崎フラグメント · 続きを見る »

一次構造

タンパク質の一次構造は直鎖のアミノ酸である 一次構造(いちじこうぞう、primary structure)とは生化学において、生体分子の特定の単位とそれらをつなぐ化学結合の正確な配置のことである。DNA、RNAや典型的な細胞内タンパク質のように、分岐や交差のない典型的な生体高分子においては、一次構造は核酸やアミノ酸といった単量体の配列と同義である。「一次構造」という言葉は、1951年にリンダーストロム・ラングによって初めて用いられた。一次構造はしばしば一次配列と間違われるが、二次配列、三次配列という概念がないように、このような用語は存在しない。.

新しい!!: DNA複製と一次構造 · 続きを見る »

二重らせん

二重らせん(にじゅうらせん)は、.

新しい!!: DNA複製と二重らせん · 続きを見る »

位相幾何学

一つの面と一つの辺を持つメビウスの帯は位相幾何学で研究される対象の一種である。 自明な結び目)を三次元で描いたもの 数学の一分野、位相幾何学(いそうきかがく、topology, トポロジー)は、その名称がτόπος(「位置」「場所」)と (「言葉」「学問」) に由来し、「位置の学問」を意味している。 トポロジーは、何らかの形(かたち。あるいは「空間」)を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質(または位相不変量)に焦点を当てたものである。位相的性質において重要なものには、連結性およびコンパクト性などが挙げられる。 位相幾何学は、空間、次元、変換といった概念の研究を通じて、幾何学および集合論から生じた分野である。このような考え方は、17世紀に「位置の幾何」(geometria situs)および「位置の解析」(analysis situs)を見越したゴットフリート・ライプニッツにまで遡れる。レオンハルト・オイラーの「ケーニヒスベルクの七つの橋」の問題および多面体公式がこの分野における最初の定理であるというのが定説となっている。用語 topology は19世紀にによって導入されたが、位相空間の概念が起こるのは20世紀の最初の10年まで待たねばならない。20世紀中ごろには、位相幾何学は数学の著名な一分野となっていた。 位相幾何学には様々な分科が存在する。.

新しい!!: DNA複製と位相幾何学 · 続きを見る »

体細胞

体細胞(たいさいぼう、英語:somatic cell)とは、多細胞生物を構成する細胞のうち生殖細胞以外の細胞のことを言う。有性生殖においては次世代へは受け継がれない。ある目的に特化してしまいそれ以外の細胞にならない分化した細胞と、何種類かの異なった機能を持つ細胞に分化する能力を持った細胞がある。後者は幹細胞と呼ばれ、その種類や多能性によって様々なものがある。.

新しい!!: DNA複製と体細胞 · 続きを見る »

化学物質

化学物質(かがくぶっしつ、chemical substance)とは、分野や文脈に応じて以下のような様々な意味で用いられている言葉である。.

新しい!!: DNA複製と化学物質 · 続きを見る »

化学親和力

化学親和力(かがくしんわりょく)または化学的親和性(かがくしんわせい)とは、化学物理学および物理化学の概念で、異なる化学種間での化合物の形成しやすさを表す電子的特性である。化学親和力はまた、原子や化合物が異なる構成の原子や化合物と化学反応しやすい傾向を示す指標でもある。 化学史家 Henry Leicester によれば、ギルバート・ルイスと Merle Randall による1923年の著書 Thermodynamics and the Free Energy of Chemical Reactions の影響で、英語圏では「親和力 (affinity)」という言葉の代わりに「自由エネルギー (free energy)」という言葉を使うようになった。.

新しい!!: DNA複製と化学親和力 · 続きを見る »

ペプチド

ペプチド(Peptid、peptide:ペプタイド, ギリシャ語の πεπτος (消化できる)に由来する)は、決まった順番で様々なアミノ酸がつながってできた分子の系統群である。1つのアミノ酸残基と次のそれの間の繋がりはアミド結合またはペプチド結合と呼ばれる。アミド結合は典型的な炭素・窒素単結合よりもいくらか短い、そして部分的に二重結合の性質をもつ。なぜならその炭素原子は酸素原子と二重結合し、窒素は一つの非共有電子対を結合へ利用できるからである。 生体内で産生されるペプチドはリボソームペプチド、非リボソームペプチド、消化ペプチドの3つに大別される。.

新しい!!: DNA複製とペプチド · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: DNA複製とミトコンドリア · 続きを見る »

マニピュレーター

マニピュレーター(。工学分野ではマニピュレータ、マニプレータ)は、手で操縦することを意味するマニピュレート(動詞)、マニピュレーション(名詞)する人や、機械などで作業を実行する部分。“マニュピレーター”は誤記。.

新しい!!: DNA複製とマニピュレーター · 続きを見る »

マシュー・メセルソン

マシュー・メセルソン(Matthew Meselson、1930年5月24日 - )はアメリカ合衆国の遺伝学者、分子生物学者。 コロラド州デンバー出身。1951年にシカゴ大学を卒業、ライナス・ポーリングに師事する。1957年に密度遠心分離法によりDNAの半保存的複製を証明した。1961年からハーバード大学の分子生物学教授。1963年から軍備管理軍縮局のコンサルタントを務める。2004年ラスカー・コシュランド医学特別業績賞受賞。.

新しい!!: DNA複製とマシュー・メセルソン · 続きを見る »

ポリメラーゼ連鎖反応

ポリメラーゼ連鎖反応(ポリメラーゼれんさはんのう、polymerase chain reaction, PCR)は、DNAを増幅するための原理またはそれを用いた手法で、手法を指す場合はPCR法と呼ばれることの方が多い。英語をそのまま片仮名読みにして「ポリメラーゼ・チェーン・リアクション」とも呼ばれる。次の特徴を持つ。.

新しい!!: DNA複製とポリメラーゼ連鎖反応 · 続きを見る »

ポックスウイルス科

ポックスウイルス科(Family Poxviridae)はウイルスの分類における1科である。この科に属するウイルスは線状の2本鎖DNAをゲノムとして持つDNAウイルスであり、そのビリオンは220~450nm×140~260nm×140~260nmの煉瓦状ないし卵形で、エンベロープを有する。通常のエンベロープを持つウイルスとは異なりエーテル耐性のものも存在する(オルトポックスウイルス属、アビポックスウイルス属)。また、ウイルスの増殖は他のDNAウイルスと異なり宿主細胞の細胞質内で行われる。感染経路としては経気道や接触によるものが多く、節足動物による機械的伝播も起こりやすい。ポックスウイルス科による病気の特徴は皮膚の発疹様斑紋である。ポックスウイルス科のウイルスによる疾患としては天然痘が有名である。.

新しい!!: DNA複製とポックスウイルス科 · 続きを見る »

メチル化

メチル化(メチルか、methylation)は、さまざまな基質にメチル基が置換または結合することを意味する化学用語である。この用語は一般に、化学、生化学、生物科学で使われる。 生化学では、メチル化はとりわけ水素原子とメチル基の置換に用いられる。 生物の機構では、メチル化は酵素によって触媒される。メチル化は重金属の修飾、遺伝子発現の調節、タンパク質の機能調節、RNA代謝に深く関わっている。また、重金属のメチル化は生物機構の外部でも起こることができる。さらに、メチル化は組織標本の染色におけるアーティファクトを減らすのに用いることができる。.

新しい!!: DNA複製とメチル化 · 続きを見る »

メセルソン-スタールの実験

メセルソン=スタールの実験(メセルソン=スタールのじっけん)は、マシュー・メセルソンとフランクリン・スタールによる、DNAが半保存的に複製されていることを実証した実験のことである。.

新しい!!: DNA複製とメセルソン-スタールの実験 · 続きを見る »

モデル生物

モデル生物(モデルせいぶつ)とは生物学、特に分子生物学とその周辺分野において、普遍的な生命現象の研究に用いられる生物のこと。.

新しい!!: DNA複製とモデル生物 · 続きを見る »

ラミン

ラミン(Lamin)は、細胞核内で構造の維持と転写の調節を行う繊維状タンパク質である。TypeⅤの中間径フィラメントである。ラミンは膜タンパク質とともに核膜の内側に核ラミナを形成する。核ラミナは核孔の位置の調整を行う他、体細胞分裂の際の核膜の分解や再構成に関与する。.

新しい!!: DNA複製とラミン · 続きを見る »

ライム病

感染のサイクル ライム病(Lyme disease、ライムボレリア症〈Lyme borreliosis〉)は、ノネズミやシカ、野鳥などを保菌動物とし、マダニ科マダニ属 Ixodes ricinus 群のマダニに媒介されるスピロヘータの一種、ボレリア Borrelia の感染によって引き起こされる人獣共通感染症の1つ。感染症法における四類感染症である。野生動物では感染しても発症しないが、人、犬、馬、牛では臨床症状を示す。名前の由来は、アメリカコネチカット州の及びで1975年に最初に確認(記載は1977年)されたことにちなむ。.

新しい!!: DNA複製とライム病 · 続きを見る »

リン酸基

リン酸基(—さんき、phosphate group)は官能基の一種で、リン酸からヒドロキシ基を取り除いたものにあたる1価の官能基。構造式は H2PO4− と表され、しばしば P と略記される。リン酸基を含む化合物の名称は、置換名ではホスホ- (phospho-)、基官能名ではリン酸-または-リン酸となる。.

新しい!!: DNA複製とリン酸基 · 続きを見る »

リン酸化

リン酸化(リンさんか、phosphorylation)は、各種の有機化合物、なかでも特にタンパク質にリン酸基を付加させる化学反応である。この反応は、生化学の中で大きな役割を担っており、2013年2月現在、MEDLINEデータベースのタンパク質のリン酸化に関する記事は21万にも及んでいる。 リン酸化は、「ホスホリル化」とも呼ばれる。リン酸化を触媒する酵素は一般にキナーゼ (Kinase) と呼ばれ、特にタンパク質を基質とするタンパク質キナーゼを単にキナーゼと呼ぶことも多い。 なお、ATP生合成(ADPへのリン酸化)を単にリン酸化と呼ぶこともある(「酸化的リン酸化」等)。.

新しい!!: DNA複製とリン酸化 · 続きを見る »

リボヌクレアーゼ

リボヌクレアーゼ(ribonuclease, RNase)はリボ核酸を分解してオリゴヌクレオチドあるいはモノヌクレオチドにする反応を触媒する酵素。ヌクレアーゼの一種で、RNase(RNアーゼまたはRNエース)とも呼ばれる。 あらゆる生物に遍く存在する酵素で、内部からRNAを分解するエンドリボヌクレアーゼ、外側から分解していくエキソリボヌクレアーゼの2種に分類される。塩基を識別して分解を行う基質特異性の高いものもあり、種類は多様である。主なものとして塩基の種類を問わないリボヌクレアーゼT2()やピリミジン塩基のある部分だけ切断するリボヌクレアーゼA()、グアニンの部分のみを分解するリボヌクレアーゼT1()などがあげられる。mRNAなどの必要なRNAはリボヌクレアーゼインヒビターと呼ばれるペプチドによってリボヌクレアーゼによる分解をまぬがれている。 リボヌクレアーゼは一次構造が最初に特定された酵素として歴史に残っており、これを決定した三人の化学者はノーベル化学賞を受賞している。.

新しい!!: DNA複製とリボヌクレアーゼ · 続きを見る »

リボソームDNA

真核生物のリボソームDNAの模式図。18S、5.8S、28S の各領域を含み、タンデムリピートを形成する。5S サブユニットはこれらとは転写単位を形成せず、別領域にコードされている。'''NTS''', nontranscribed spacer; '''ETS''', external transcribed spacer; '''ITS''', internal transcribed spacers(5'側が ITS1、3'側が ITS2) リボソームDNA(Ribosomal DNA; rDNA)は、リボソームRNA(rRNA)をコードしている DNA である。リボソームは細胞内でタンパク質やペプチド鎖の合成を行っている小器官であり、リボソーム自身はタンパク質と rRNA より成っている。右図の通り、rDNA は NTS、ETS、18S、ITS1、5.8S、ITS2、それに 28S を含む転写単位(オペロン)の反復配列(タンデムリピート)から構成されている。rDNA には 5S rRNA をコードするもう一つの遺伝子があり、大部分の真核生物ではゲノム中のどこかに位置している PMID 19052325。ショウジョウバエの場合、5S の rDNA もタンデムリピートを形成している。細胞核において、染色体中 rDNA にあたる領域はループ構造を形成し、核小体として視覚的に確認できる。この rDNA 領域によって核小体が形成されることから、仁形成部位(nucleolus organizer region)とも呼ばれる。ヒトゲノムにおいては、13、14、15、21、それに22番染色体の計5染色体に仁形成部位が存在している。.

新しい!!: DNA複製とリボソームDNA · 続きを見る »

ループ

ループ (loop) は輪や輪の形をしたもののこと。あるいは物事が繰り返すことの比喩。.

新しい!!: DNA複製とループ · 続きを見る »

ヌクレアーゼ

ヌクレアーゼ(Nuclease)は核酸分解酵素の総称。デオキシリボ核酸ないしリボ核酸の糖とリン酸の間のホスホジエステル結合を加水分解してヌクレオチドとする。 RNAを分解するリボヌクレアーゼとDNAを分解するデオキシリボヌクレアーゼに分類できる他、両方を分解することができるヌクレアーゼも知られており、その役割も様々である。ウイルスが有するヌクレアーゼには宿主の核酸を分解して自らの核酸の原料とする役割をもつものがある。また、制限酵素もヌクレアーゼの一種であり、これは外来の核酸を分解してウイルスの感染、増殖を防ぐ役割があると考えられている。核酸がメチル化されているとヌクレアーゼは働かなくなるため、自分の核酸を無闇に分解しないようにこの酵素を有する細菌も多い。多細胞生物においては死滅した細胞の核酸を分解するためにヌクレーゼが生産されることがあるほか、特殊な例としては紫外線などの影響で二量化したチミジンをとりはずすためのヌクレアーゼが存在する。 分解の型式により、エンドヌクレアーゼとエキソヌクレアーゼという分類もできる。; エンドヌクレアーゼ(英:endonuclease); エキソヌクレアーゼ(英:exonuclease) ぬくれあせ *.

新しい!!: DNA複製とヌクレアーゼ · 続きを見る »

ヌクレオソーム

H4のコアヒストンからなるヌクレオソームコアの粒子の結晶構造とDNA。らせん軸の上部方向から見たもの。 ヌクレオソーム(ぬくれおそーむ;nucleosome)は、すべての真核生物に共通するクロマチンの基本的構成単位である。 ヌクレオソームは、4種のコアヒストン(H2A、H2B、H3、H4)から構成されるヒストン8量体に146 bpの2重鎖DNAが巻き付いた構造をとる。2つのヌクレオソームをつなぐ部分のDNAはリンカーDNAと呼ばれる。この構造を電子顕微鏡で観察すると、DNA鎖上にビーズが並んでいるように見える。 アダ・オリンズ、ドナルド・オリンズ夫妻、ロジャー・コーンバーグらによって1974年に提唱されたヌクレオソーム説は、その後の遺伝子発現研究の基盤をつくった。古細菌もヒストン様のタンパク質をもち、ヌクレオソーム様の構造が観察されているが、その解析は進んでいない。.

新しい!!: DNA複製とヌクレオソーム · 続きを見る »

トロンボーン

トロンボーンは、金管楽器の一種である。スライド式のものは、2つの長いU字型の管を繋ぎ合わせた構造を持ち、その一部(スライド)を伸縮させて音高を変える。また、バルブ式の物もある。テナートロンボーンと現代のベーストロンボーンの調はB♭(変ロ調)であるが、いずれも実音で記譜される。語源はラッパを意味するイタリア語 tromba に、より大きなものを表す接尾語(“-one”)を付けたものであり、「大きなトランペット」という意味である。.

新しい!!: DNA複製とトロンボーン · 続きを見る »

ヘリカーゼ

ヘリカーゼ(helicase; ヘリケース)は核酸のリン酸エステル骨格に沿って動きながら絡み合う核酸をほどく酵素の総称である。すべての生物に必須であると考えられる。DNAの2本鎖をほどくものを特にDNAヘリカーゼ、RNAの二次構造をほどくものをRNAヘリカーゼと呼び、一方構造上ヘリカーゼに類似しているがDNA上を動くだけで核酸をほどかないものはDNAトランスロケースと呼ぶ。.

新しい!!: DNA複製とヘリカーゼ · 続きを見る »

ヘルペスウイルス科

ヘルペスウイルス科(ヘルペスウイルスか、Herpesviridae)は2本鎖DNAをゲノムとするDNAウイルスの一科。.

新しい!!: DNA複製とヘルペスウイルス科 · 続きを見る »

プライマー

プライマー.

新しい!!: DNA複製とプライマー · 続きを見る »

プライマー (生物)

DNA 複製フォークの模式図。RNAプライマーのラベルが上方にみえる。 分子生物学において、プライマー とはDNA複製時の起点となる短鎖RNAまたはDNAである。具体的な長さは、一般的におおよそ18-22塩基程度である。DNA複製を触媒する酵素、DNAポリメラーゼは既存のDNA高分子鎖にヌクレオチドを追加することしかできないので、DNA複製過程において必須の要素である。ポリメラーゼはプライマーのから始め、対向鎖を複製する。 生体内におけるDNA複製は、RNAプライマーと呼ばれる短鎖RNAをDNA複製の開始に利用している。これはリーディング鎖の複製時とラギング鎖の複製時とで異なることはなく、人体内にDNAプライマーは存在しない。これらのRNAプライマーを することもできる。 一方、生化学および分子生物学におけるDNAポリメラーゼの関わる(DNAシークエンシングやポリメラーゼ連鎖反応などの) in vitro 実験手法では、DNAプライマーの方が温度安定性が高いので利用される。実験上、結合相手の鋳型DNA鎖と近い融点のプライマーを用いることが重要である場合が多い。アニール温度よりも大幅に高い融点のプライマーはDNA配列中の正しくない場所に分子交雑し伸長するおそれがあり、融点がアニール温度よりも低いとアニールが失敗し、全く伸長しないおそれがある。プライマーはされた、通常は20塩基程度の短いオリゴヌクレオチドである。これが標的DNAに分子交雑し、その後ポリメラーゼによる複製が始まる。.

新しい!!: DNA複製とプライマー (生物) · 続きを見る »

プラスミド

プラスミド (plasmid) は細胞内で複製され、娘細胞に分配される染色体以外のDNA分子の総称。1952年にジョシュア・レーダーバーグによって提案された。 細菌や酵母の細胞質内に存在し、核様体のDNAとは独立して自律的に複製を行う。一般に環状2本鎖構造をとる。 細菌の接合を起こすもの(Fプラスミドなど)、抗生物質に対する耐性を宿主にもたらすものなどがある。 遺伝子工学分野においては、遺伝子組み換えの際に多く用いられる。様々な人工的な改変がなされた数 kbpのプラスミドが多く作られており、研究用キットとして市販されている(詳細はベクターを参照。) 細菌のみではなく酵母や哺乳類の細胞内で複製・維持されるものもある。 大腸菌を用いた遺伝子クローニングでは、まずプラスミドを取り出し、次いで制限酵素で切断し、切断部位に増幅しようとするDNA断片(プラスミドと同じ制限酵素で切り出したもの)をDNAリガーゼで結合させる。この組み換えプラスミドを大腸菌に導入し、大腸菌の大量培養により組み換えDNAを増幅する。 土壌菌の一種であるアグロバクテリウムがもつTiプラスミドは植物の遺伝子導入において頻繁に利用される。 複製機構が類似しているプラスミド同士は同一宿主菌内では共存できない(不和合性, incompatibility)。.

新しい!!: DNA複製とプラスミド · 続きを見る »

パルボウイルス

パルボウイルスは、パルボウイルス科 Parvoviridae に属する直鎖1本鎖DNAウイルスである。直径20nmの球状粒子で、カプシドは正二十面体構造を形成し、エンベロープは持たない。パルボウイルスは自然界に存在するウイルスの中でも最も小さい部類に入り、そのためラテン語で「小さい」を意味する parvus から命名された。パルボウイルス科のウイルスのなかには、増殖のためにヘルパーウイルスを必要とする欠損ウイルスである種も存在する。 パルボウイルスは特定の種の動物と関連性があり、多くの場合は自身と関連性のある種の動物にしか感染しない。例えば、犬パルボウイルスはイヌ、オオカミ、キツネ等には感染するが、ネコやヒトには感染しない。.

新しい!!: DNA複製とパルボウイルス · 続きを見る »

ヒドロキシ基

ヒドロキシ基(ヒドロキシき、hydroxy group)は、有機化学において構造式が −OH と表される1価の官能基。旧IUPAC命名則ではヒドロキシル基 (hydroxyl group) と呼称していた。 無機化合物における陰イオン OH− は「水酸化物イオン」を参照のこと。.

新しい!!: DNA複製とヒドロキシ基 · 続きを見る »

ピュロコックス属

Pyrococcus(ピュロコックス属、パイロコッカス属、ピロコックス属)は熱水噴出孔や油田鉱床などに生息する超好熱古細菌。ユリアーキオータの中では''Methanopyrus kandleri''に次いで好熱性が強く、全種が90℃以上に至適生育温度を持つ。最高増殖温度はPyrococcus yayanosiiの108である。比較的増殖速度が早いこともあって、よく研究の進んでいる超好熱菌の一つである。 属名は球菌であること、非常に強い好熱性を持つことに由来し、ギリシャ語で炎(Pyr-o-)+ 球菌(-coccus)を意味する。.

新しい!!: DNA複製とピュロコックス属 · 続きを見る »

テロメラーゼ

テロメラーゼによるテロメア配列付加の模式図:上)ヒトのテロメラーゼは染色体末端DNAの 3'側に6塩基配列 TTAGGGを付加する。下)付加された配列をテンプレート(鋳型)としてDNAポリメラーゼが相補鎖を合成する。 末端複製問題とテロメア:左)DNAはDNAポリメラーゼ(青丸)によって複製されるが、最末端のプライマー(赤線)部分は複製されない。このため、複製のたびにDNAは短縮する。これが「末端複製問題」である。右)生殖細胞やガン細胞ではテロメラーゼによって末端部分の複製が行われる。テロメラーゼ活性がない体細胞では分裂ごとに短縮がおこり、一定以上短くなると分裂を停止し細胞老化が起こる。 テロメラーゼ (telomerase) は、真核生物の染色体末端(テロメア)の特異的反復配列を伸長させる酵素。テロメア伸長のテンプレート(鋳型)となるRNA構成要素と逆転写酵素活性を持つ触媒サブユニットおよびその他の制御サブユニットによって構成されている Jabion Jabion Jabion 。 テロメラーゼ活性が低い細胞は、一般に細胞分裂ごとにテロメアの短縮が進み、やがてヘイフリック限界と呼ばれる細胞分裂の停止が起きる。テロメラーゼは、ヒトでは生殖細胞・幹細胞・ガン細胞などでの活性が認められ、それらの細胞が分裂を継続できる性質に関与している。このことから、活性を抑制することによるガン治療、および活性を高めることによる細胞分裂寿命の延長、その両面から注目を浴びている。 酵素によりテロメアが伸長されることは、1973年にアレクセイ・オロヴニコフによって最初に予測された。彼はまた細胞老化に関するテロメア仮説およびガンとテロメアの関連について示唆を行った。 1985年にカリフォルニア大学のキャロル・W・グライダーとエリザベス・H・ブラックバーンは、テトラヒメナからこの酵素を単離したことを公表した。グライダーとブラックバーンはジャック・W・ショスタクと共に、テロメアとテロメラーゼに関する一連の研究で、2009年ノーベル生理学・医学賞を受賞した。.

新しい!!: DNA複製とテロメラーゼ · 続きを見る »

テトラピロール

テトラピロール (tetrapyrrole) は4個のピロール環を含む化合物群である。コリン(corrin)を除き、ピロール環どうしはメチレン架橋で繋がれており(フタロシアニンは窒素で架橋)、環状のものと直鎖状のものがある。 直鎖状のものにはビリルビンなどのビリン類や、シアノバクテリアがもつフィコビリンなどが知られる。 環状(テトラピロール環)のものには、4つあるピロール環の不飽和状態によりポルフィリン(全環が不飽和)、クロリン(D環のみ飽和)、バクテリオクロリン(B環、D環が飽和)の3種類に分類されている。これらのテトラピロール構造は金属と安定な錯体を形成する。鉄(Fe)を配したヘム、マグネシウム(Mg)を配したクロロフィルが知られている。 コリンもテトラピロール環であるが、4つのピロール環をつなぐメチレン架橋の1つが、ピロール環どうしの直接結合に置き換わった類似物質だが、やはり錯体を形成し、コバルト(Co)を配したビタミンB12が知られる。これらはいずれも生物の呼吸代謝に関する重要な生理活性を担っている。.

新しい!!: DNA複製とテトラピロール · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: DNA複製とデオキシリボ核酸 · 続きを見る »

フランソワ・ジャコブ

フランソワ・ジャコブ(François Jacob, 1920年6月17日 - 2013年4月21日)はフランスの医師で病理学者、遺伝学者。ジャック・モノーとともに遺伝子発現調節を説明するオペロン説を提出し、これにより1965年度ノーベル生理学医学賞を受賞した。.

新しい!!: DNA複製とフランソワ・ジャコブ · 続きを見る »

ファージ

ファージ (Phage) は細菌に感染するウイルスの総称。正式にはバクテリオファージと呼ばれる。 ファージの基本構造は、タンパク質の外殻と遺伝情報を担う核酸 (主に二本鎖DNA) からなる。ファージが感染した細菌は細胞膜を破壊される溶菌という現象を起こし、死細胞を残さない。細菌が食べ尽くされるかのように死滅するため、これにちなんで「細菌(bacteria)を食べるもの(ギリシア語:phagos)」を表す「バクテリオファージ(bacteriophage)」という名がつけられた。 20世紀初頭にアーネスト・ハンキンとフレデリック・トウォートによって独立に発見され、カナダの生物学者フェリックス・デレーユによって溶菌作用が見出された。初期の分子生物学においてモデル生物として盛んに用いられた。またファージのゲノムは改変され、遺伝子導入やDNA断片のライブラリ作成などにも用いられている。有名なファージの一つにはラムダファージ(λファージ)があり、大腸菌に感染する。全ゲノムの解読はラムダファージで行われた(ゲノムプロジェクト)。また、ウイルス粒子が非常に複雑な形態のT4ファージもよく知られている。.

新しい!!: DNA複製とファージ · 続きを見る »

フェニルアラニン

フェニルアラニン (phenylalanine) はアミノ酸の一種で、側鎖にベンジル基を持つ。略号は Phe または F。アラニンの側鎖の水素原子が1つフェニル基で置き換えられた構造を持つことが名称の由来である。室温では白色の粉末性固体である。.

新しい!!: DNA複製とフェニルアラニン · 続きを見る »

ホロ酵素

ホロ酵素(ホロこうそ、)とは、酵素本体となるタンパク質分子に、非タンパク質性の分子が結合して初めて酵素として機能するものを呼ぶ。この場合の非タンパク質性の分子の部分を補因子と呼ぶ。補酵素を要求する酵素はホロ酵素であり、補酵素部分が補因子となっている。 多くの場合、非タンパク質性の部分を失うと活性を失う。このタンパク質部分のみの状態のものをアポ酵素と呼ぶ。 また、複数のタンパク質分子が複合体を形成して初めて活性を示すような酵素についても、ホロ酵素と呼ぶ場合がある。この場合、一部のサブユニットを失って活性を失った状態のものがアポ酵素と呼ばれる。.

新しい!!: DNA複製とホロ酵素 · 続きを見る »

ホスホジエステル結合

ホスホジエステル結合(ホスホジエステルけつごう、Phosphodiester bond)とは、炭素原子の間がリン酸を介した2つのエステル結合によって強く共有結合している結合様式のこと。地球上のすべての生命に存在し、DNAやRNAの骨格を形成している。この場合、(デオキシ)リボースの5'位の炭素原子と、他の(デオキシ)リボースの3'位の炭素原子の間を結合している。 リン酸基の値は0に近いため、生体内の中性条件では負電荷をもつ。そのため二本鎖DNAでは相対するリン酸同士が反発力を示し、それがタンパク質(ヒストン)、金属イオン、そしてポリアミンによって中和されている。 ホスホジエステル結合を形成して新たなヌクレオチドを結合する際には、ヌクレオチドの三リン酸型もしくは二リン酸型が解裂することで、酵素反応を進行させるために必要なエネルギーが発生し、そのリン酸基がホスホジエステル結合を形成する。 RNAの五炭糖同士を結合しているホスホジエステル結合はアルカリ加水分解によって分解されやすい。このとき2'位の水酸基が求核剤として機能して2',3'-環状一リン酸を形成し、次いで2'-一リン酸または3'-一リン酸に分解される。DNAは2'位の水酸基がないため、同様のアルカリ条件では安定である。 ホスホジエステラーゼはホスホジエステル結合の加水分解を触媒する酵素である。DNAの酸化損傷を修復する際には3'-ホスホジエステラーゼが重要である。またサイクリックAMPやサイクリックGMPを、AMPやGMPにする。 DNA複製の際、DNAポリメラーゼが合成したDNA鎖同士は、DNAリガーゼがホスホジエステル結合を形成することでつながれる。.

新しい!!: DNA複製とホスホジエステル結合 · 続きを見る »

ダイナミクス

ダイナミクス (dynamics).

新しい!!: DNA複製とダイナミクス · 続きを見る »

切断 (DNA)

切断 (せつだん、英語:cut、scission) はDNAの切断の型のひとつで、DNA二本鎖が二本とも切り離されることである。.

新しい!!: DNA複製と切断 (DNA) · 続きを見る »

アーサー・コーンバーグ

アーサー・コーンバーグ(, 1918年3月3日 - 2007年10月26日)は、アメリカ合衆国の生化学者で、DNAの生合成のメカニズムを解明し、ニューヨーク大学のセベロ・オチョアとともに1959年度のノーベル生理学・医学賞を受賞した。1962年にイェシーバー大学からL.H.D.学位を得た。 彼は、生化学の中でも酵素化学やDNAの生合成、動物、植物、微生物、ウイルスの遺伝を支配する核酸の研究を主に行った。.

新しい!!: DNA複製とアーサー・コーンバーグ · 続きを見る »

アデノウイルス

アデノウイルスは、二重鎖直鎖状DNAウイルスで、カプシドは直径約80nmの正20面体の球形粒子をしており、エンベロープは持たない。アデノウイルスは感染性胃腸炎、ライノウイルス等とともに、「風邪症候群」を起こす主要病原ウイルスの一つと考えられている。.

新しい!!: DNA複製とアデノウイルス · 続きを見る »

イニシエーター

イニシエーター(initiator)またはInr配列とは、転写開始点のごく近く(だいたい1塩基分上流付近)にあるのが特徴の、真核生物のコアプロモーターの一部である。RNAポリメラーゼⅡによる転写を高効率とする働きを持つ。ただし、全てのコアプロモーターに存在するわけではない。また、イニシエーターは上流プロモーターエレメントやエンハンサーによる影響を受けやすい。この例として、末端デオキシヌクレチドトランスフェラーゼ(TdT)遺伝子が挙げられる。これはTおよびBリンパ球の発現のために活性化される遺伝子である。.

新しい!!: DNA複製とイニシエーター · 続きを見る »

イソロイシン

イソロイシン (isoleucine) はアミノ酸の一種で2-アミノ-3-メチルペンタン酸(2-アミノ-3-メチル吉草酸)のこと。側鎖に ''sec''-ブチル基を持つ。略号は Ile または I。ロイシンの構造異性体である。「アイソリューシン」と英語読みで音訳される。 疎水性アミノ酸に分類される。蛋白質構成アミノ酸の1つで、必須アミノ酸である。糖原性・ケト原性を持つ。.

新しい!!: DNA複製とイソロイシン · 続きを見る »

エピジェネティクス

ピジェネティクス()とは、一般的には「DNA塩基配列の変化を伴わない細胞分裂後も継承される遺伝子発現あるいは細胞表現型の変化を研究する学問領域」である。ただし、歴史的な用法や研究者による定義の違いもあり、その内容は必ずしも一致したものではない。 多くの生命現象に関連し、人工多能性幹細胞(iPS細胞)・胚性幹細胞(ES細胞)が多様な器官となる能力(分化能)、哺乳類クローン作成の成否と異常発生などに影響する要因(リプログラミング)、がんや遺伝子疾患の発生のメカニズム、脳機能などにもかかわっている。.

新しい!!: DNA複製とエピジェネティクス · 続きを見る »

オリゴマー

リゴマー(oligomer)は一般に、比較的少数のモノマーが結合した重合体のこと。モノマーの数に応じて、ダイマー(dimer:二量体)、トライマー(trimer:三量体)、テトラマー(tetramer:四量体)、・・・ などと呼ぶこともある。.

新しい!!: DNA複製とオリゴマー · 続きを見る »

カテナン

テナン (catenane) は、複数の環が鎖のように、共有結合を介せずに繋がった分子集合体のこと。語源はラテン語で「鎖」を意味する "catena"。2つの輪がつながったカテナンは カテナン、3つであれば カテナンと呼ばれる。現在までに、カテナンまでが合成されている。.

新しい!!: DNA複製とカテナン · 続きを見る »

キナーゼ

ナーゼ(Kinase、読み:カイネイス、カイネース)とは、生化学において、ATPなどの高エネルギーリン酸結合を有する分子からリン酸基を基質あるいはターゲット分子に転移する(リン酸化する)酵素の総称であり、リン酸化酵素とも呼ばれる。EC 2.7群(リン酸転移酵素、ホスホトランスフェラーゼ)に属する。研究現場での用例の推移はキナーゼ固有の説明事項ではないので略する。 日本では従来ドイツ語発音に由来するキナーゼが普及していたが、近年は国際間の研究者の直接交流が盛んになり、その場で英語が用いられることが通例であるため、-->英語発音に由来するカイネイス、カイネースと呼ぶ研究者が増えてきている。 一般に高エネルギーリン酸化合物からのリン酸転移反応は大きな負の自由エネルギー変化を伴うため不可逆変化として進行しやすく、その結果生じる化合物もまた高エネルギーリン酸化合物である場合もある。ゆえにキナーゼは基質分子に対して「活性化」あるいは「エネルギーを与える」(キナーゼの名称もこの意味による)と考えることができる。すべてのキナーゼはMg2+あるいはMn2+など2価の金属イオンを要し、それによりドナー分子の末端リン酸基の転移を容易にする。 キナーゼには様々なタイプがあるが、大きくは低分子化合物を基質とし代謝経路で機能するタイプと、タンパク質を基質としてその機能を調節したり細胞内シグナル伝達経路で機能するタイプの2つに分けられる。例として次のようなものがある:.

新しい!!: DNA複製とキナーゼ · 続きを見る »

キイロショウジョウバエ

イロショウジョウバエ(黄色猩々蝿)は、ハエ目(双翅目)・ショウジョウバエ科の昆虫である。生物学のさまざまな分野でモデル生物として用いられ、多くの発見がなされた。特に遺伝学的解析に優れた性質をもつ。単にショウジョウバエといえば本種を指すことも多い。.

新しい!!: DNA複製とキイロショウジョウバエ · 続きを見る »

クロマチン

DNAが折り畳まれてクロマチンをつくり、分裂期にはさらに染色体へ変換される。 クロマチン(chromatin)とは、真核細胞内に存在するDNAとタンパク質の複合体のことを表す。.

新しい!!: DNA複製とクロマチン · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: DNA複製とゲノム · 続きを見る »

コレラ菌

レラ菌(コレラきん、学名 Vibrio cholerae)は、ビブリオ属に属するグラム陰性のコンマ型をした桿菌の一種水之江義充、吉田眞一「コレラ菌とビブリオ科の細菌」:『戸田新細菌学』(吉田眞一、柳雄介編)改訂33版、南山堂、2007年 pp.563-577 ISBN 978-4-525-16013-5J.J. Farmer III and J. Michael Janda "Vibrionaceae" in Bergey's manual of systematic bacteriology (George M. Garrity et al. eds.) 2nd ed.

新しい!!: DNA複製とコレラ菌 · 続きを見る »

コンプレックス (曖昧さ回避)

ンプレックス( komplex complex).

新しい!!: DNA複製とコンプレックス (曖昧さ回避) · 続きを見る »

コヒーシン

ヒーシン(こひーしん:cohesin)は、姉妹染色分体の接着(複製された染色体を娘細胞に均等に分離するために必須な過程; sister chromatid cohesion)に中心的な役割を果たすタンパク質複合体である 。.

新しい!!: DNA複製とコヒーシン · 続きを見る »

コピー

ピー(英語:Copy).

新しい!!: DNA複製とコピー · 続きを見る »

シチジン

チジン(Cytidine)は、ピリミジンヌクレオシドの1つでシトシンがリボース環にβ-N1-グリコシド結合で接続した構造をもつ物質〈ヌクレオチド参照〉である。 シトシンがデオキシリボース環に接合しているものは、デオキシシチジンである。 亜硝酸を作用させると、ウリジンになる。吸収極大波長はpHで変化し、pH2で280nm、pH12で271nmである。.

新しい!!: DNA複製とシチジン · 続きを見る »

ショウジョウバエ

ョウジョウバエ(猩猩蠅)は、ハエ目(双翅目)・ショウジョウバエ科 (Drosophilidae) に属するハエの総称である。科学の分野では、その一種であるキイロショウジョウバエ (Drosophila melanogaster) のことをこう呼ぶことが多い。この種に関しては非常に多くの分野での研究が行われているが、それらに関してはキイロショウジョウバエの項を参照。本項ではこの科全般を扱う。.

新しい!!: DNA複製とショウジョウバエ · 続きを見る »

シドニー・ブレナー

ドニー・ブレナー (Sydney Brenner, 1927年1月13日 - )はイギリス人の生物学者。現在はアメリカで活動する。 線虫を用いたアポトーシス研究によりロバート・ホロビッツとジョン・サルストンとともに2002年にノーベル生理学・医学賞を受賞。.

新しい!!: DNA複製とシドニー・ブレナー · 続きを見る »

シアニディオシゾン

アニディオシゾン(学名:、通称シゾン)は、イタリアの温泉に生育する単細胞性の紅藻である。立教大学の黒岩常祥教授らのグループにより、真核藻類としては初めてゲノムが解読され、2004年4月8日のNature誌に報告された。.

新しい!!: DNA複製とシアニディオシゾン · 続きを見る »

スルフォロブス属

Sulfolobus(スルフォロブス属、サルフォロバス属)は、陸上の火山や温泉などに広く生息する好気・好酸・好熱性の古細菌の一属である。 属名は、硫黄を好むこと、細胞表面に頻繁に突出部を形成することから、ラテン語で、硫黄(Sulfur;スルフル)+ 丸・耳たぶ、葉よう(希:lobus;ロブス)という意味になっている。.

新しい!!: DNA複製とスルフォロブス属 · 続きを見る »

セリン

リン (serine) とはアミノ酸の1つで、アミノ酸の構造の側鎖がヒドロキシメチル基(–CH2OH)になった構造を持つ。Ser あるいは S の略号で表され、IUPAC命名法に従うと 2-アミノ-3-ヒドロキシプロピオン酸である。セリシン(絹糸に含まれる蛋白質の一種)の加水分解物から1865年に初めて単離され、ラテン語で絹を意味する sericum からこの名がついた。構造は1902年に明らかになった。 極性無電荷側鎖アミノ酸に分類され、グリシンなどから作り出せるため非必須アミノ酸である。糖原性を持つ。酵素の活性中心において、求核試薬として機能している場合がある。.

新しい!!: DNA複製とセリン · 続きを見る »

セントラルドグマ

ントラルドグマ()とは、遺伝情報は「DNA→(転写)→mRNA→(翻訳)→タンパク質」の順に伝達される、という、分子生物学の概念である。フランシス・クリックが1958年に提唱したCrick, F.H.C. (1958): Symp.

新しい!!: DNA複製とセントラルドグマ · 続きを見る »

タバコ

タバコ(たばこ、煙草、)は、ナス科タバコ属の熱帯地方原産の植物佐竹元吉 監修『日本の有毒植物』 学研教育出版 2012年、ISBN 9784054052697 p.192.

新しい!!: DNA複製とタバコ · 続きを見る »

サルモネラ

ルモネラ とは、グラム陰性 通性嫌気性桿菌の腸内細菌科の一属(サルモネラ属)に属する細菌のこと。主にヒトや動物の消化管に生息する腸内細菌の一種であり、その一部はヒトや動物に感染して病原性を示す。ヒトに対して病原性を持つサルモネラ属の細菌は、三類感染症に指定されている腸チフスやパラチフスを起こすもの(チフス菌 とパラチフス菌 )と、感染型食中毒を起こすもの(食中毒性サルモネラ:ネズミチフス菌 や腸炎菌 など)とに大別される。食品衛生の分野では、後者にあたる食中毒の原因となるサルモネラを特にサルモネラ属菌と呼ぶが、一般には、これらを指して狭義にサルモネラあるいはサルモネラ菌と呼ぶこともある。細胞内寄生性細菌であり、チフス菌やパラチフス菌は主にマクロファージに感染して菌血症を、それ以外の食中毒性サルモネラは腸管上皮細胞に感染して胃腸炎を起こす性質を持ち、この細胞内感染がサルモネラの病原性に関与している。 という属名は、1885年にアメリカでサルモネラ属の基準株であるブタコレラ菌 を発見した細菌学者、にちなんで名付けられた。ただし、サルモネラ属に属する細菌の分離はそれ以前から行われており、ヒトに対する病原性サルモネラとして最初に分離されたのはチフス菌 である。チフス菌は1880年にカール・エーベルトにより命名され、1884年にゲオルク・ガフキーがその純培養に成功した。.

新しい!!: DNA複製とサルモネラ · 続きを見る »

サブユニット

構造生物学におけるサブユニット(subunit)は、他のタンパク質と会合して多量体タンパク質やオリゴマータンパク質を形成する単一のタンパク質分子のことを指す。日本語では、亜単位、亜粒子などと訳される。 自然界に存在する多くのタンパク質や酵素は多量体であり、主要な例としてヘモグロビンやイオンチャネル、DNAポリメラーゼ、ヌクレオソーム、微小管などがある。多量体タンパク質の各サブユニットは、お互いに全く同一であったり、相同的であったり、全く異なる個々が全く異なる仕事を担ったりする。ある種のタンパク質会合体では、片方のサブユニットを「調節サブユニット」と呼び、もう片方のサブユニットを「触媒サブユニット」と呼ぶ。調節サブユニットと触媒サブユニットがお互いに会合形成した酵素は、多くの場合、ホロ酵素と呼ばれる。1個のサブユニットは1本のポリペプチド鎖から成る。1本のポリペプチド鎖は1本の遺伝子によってコードされている。つまり、任意のタンパク質を生成するためには、必ずそのタンパク質を構成する各サブユニットをコードする1本の遺伝子が存在しなければならない。 サブユニットの名前にはギリシャ文字やローマ字が用いられることが多く、各種のサブユニットの個数は下付き文字で表示される。例えば、1分子のATPシンターゼはαと呼ばれるサブユニットを3個持っているので、α3と表示される。サブユニットの上位区分も、α3β3-六量体として具体的に記述できる。.

新しい!!: DNA複製とサブユニット · 続きを見る »

サイクリン

イクリン (Cyclin) は、真核生物の細胞において細胞周期を移行させるためのエンジンとして働く蛋白質のひとつ。1989年にイギリスの医学者ティモシー・ハントが、間期において急に発現の落ちる蛋白質として発見した。現在までに哺乳類では20種類以上のサイクリンが見つかっている。.

新しい!!: DNA複製とサイクリン · 続きを見る »

哺乳類

哺乳類(ほにゅうるい、英語:Mammals, /ˈmam(ə)l/、 学名:)は、脊椎動物に分類される生物群である。分類階級は哺乳綱(ほにゅうこう)とされる。 基本的に有性生殖を行い、現存する多くの種が胎生で、乳で子を育てるのが特徴である。ヒトは哺乳綱の中の霊長目ヒト科ヒト属に分類される。 哺乳類に属する動物の種の数は、研究者によって変動するが、おおむね4,300から4,600ほどであり、脊索動物門の約10%、広義の動物界の約0.4%にあたる。 日本およびその近海には、外来種も含め、約170種が生息する(日本の哺乳類一覧、Ohdachi, S. D., Y. Ishibashi, M. A. Iwasa, and T. Saitoh eds.

新しい!!: DNA複製と哺乳類 · 続きを見る »

出芽酵母

出芽酵母(しゅつがこうぼ, 英語: budding yeast)は出芽によって増える酵母の総称であるが、普通は Saccharomyces cerevisiae をさす。.

新しい!!: DNA複製と出芽酵母 · 続きを見る »

動物

動物(どうぶつ、羅: Animalia、単数: Animal)とは、.

新しい!!: DNA複製と動物 · 続きを見る »

突然変異

突然変異(とつぜんへんい)とは、生物やウイルスがもつ遺伝物質の質的・量的変化。および、その変化によって生じる状態。 核・ミトコンドリア・葉緑体において、DNA、あるいはRNA上の塩基配列に物理的変化が生じることを遺伝子突然変異という。染色体の数や構造に変化が生じることを染色体突然変異という。 細胞や個体のレベルでは、突然変異により表現型が変化する場合があるが、必ずしも常に表現型に変化が現れるわけではない。 また、多細胞生物の場合、突然変異は生殖細胞で発生しなければ、次世代には遺伝しない。 表現型に変異が生じた細胞または個体は突然変異体(ミュータント)と呼ばれ、変異を起こす物理的・化学的な要因は変異原(ミュータゲン)という。 個体レベルでは、発ガンや機能不全などの原因となる場合がある。しかし、集団レベルでみれば、突然変異によって新しい機能をもった個体が生み出されるので、進化の原動力ともいえる。 英語やドイツ語ではそれぞれミューテーション、ムタチオン、と呼び、この語は「変化」を意味するラテン語に由来する。.

新しい!!: DNA複製と突然変異 · 続きを見る »

競合阻害

合阻害(きょうごうそがい、competitive inhibition)、競争阻害、拮抗阻害は、酵素の活性部位への阻害剤の結合が基質の結合を妨げる(逆もまた同様)酵素阻害剤の形式である。 ほとんどの競合阻害剤は酵素の活性部位に可逆的に結合することによって機能する。その結果、多くの文献ではこれが競合阻害剤を決定付ける特徴であると述べられている 。しかしながら、酵素が阻害剤あるいは基質のどちらとも結合できるが同時には結合できない多くの可能な機構が存在するため、これは誤解を招くおそれのある過度の単純化である。例えば、アロステリック阻害剤は競合的、非競合的、不競合的阻害を見せる可能性がある。.

新しい!!: DNA複製と競合阻害 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: DNA複製と紫外線 · 続きを見る »

細胞小器官

細胞小器官(さいぼうしょうきかん、)とは、細胞の内部で特に分化した形態や機能を持つ構造の総称である。細胞内器官、あるいはラテン語名であるオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。 細胞小器官の呼称は、顕微鏡技術の発達に従い、それぞれの器官の同定が進むとともに産まれた概念である。したがってどこまでを細胞小器官に含めるかについては同定した経過によって下記のように混乱が見られる。細胞小器官を除いた細胞質基質についても、新たな構造や機能が認められ、細胞小器官を分類して論じることは今日ではあまり重要な意味をなさなくなってきつつある。 第一には、最も早い時期に同定された核、小胞体、ゴルジ体、エンドソーム、リソソーム、ミトコンドリア、葉緑体、ペルオキシソーム等の生体膜で囲まれた構造体だけを細胞小器官と呼ぶ立場があり、またこれらはどの場合でも細胞小器官に含められている。これらを膜系細胞小器官と呼ぶ場合もある。膜系細胞小器官が内を区画することにより、色々な化学環境下での生反応を並行することを可能にしている。また膜の内外で様々な物資の濃度差を作ることができ、このことを利用してエネルギー生産(電子伝達系)や、物質の貯蔵などを行っている。さらに小胞体、ゴルジ体、エンドソーム、リソソームは、小胞を介して細胞膜と連絡しあっており、このEndomembrane systemと呼ばれるネットワークを通じて物質の取込み(エンドサイトーシス)や放出(分泌)を行うことで、他の細胞や細胞外とのコミュニケーションを達成している。 なおこれらのうちミトコンドリアは、独自の遺伝構造を持つことから、生物進化の過程や種の拡散において注目される場合があり、例えばヒトではミトコンドリア・イブのような共通祖先も想定される。ミトコンドリアに関しては、元来別の細胞が細胞内共生したものに由来するとの説(細胞内共生説)が有力視されている。葉緑体に関しても共生に由来するのではないかという見方もあるが、その起源は依然不明である。 第二には、細胞骨格や、中心小体、鞭毛、繊毛といった非膜系のタンパク質の超複合体からなる構造体までを細胞小器官に含める場合もある。 さらには、核小体、リボソームまで細胞小器官と呼んでいる例も見いだされる。.

新しい!!: DNA複製と細胞小器官 · 続きを見る »

細胞分裂

細胞分裂(さいぼうぶんれつ)とは、1つの細胞が2個以上の娘細胞に分かれる生命現象。核分裂とそれに引き続く細胞質分裂に分けてそれぞれ研究が進む。単細胞生物では細胞分裂が個体の増殖となる。多細胞生物では、受精卵以後の発生に伴う細胞分裂によって細胞数が増える。それらは厳密な制御機構に裏打ちされており、その異常はたとえばガン化を引き起こす。ウィルヒョウは「細胞は細胞から生ず」と言ったと伝えられているが、これこそが細胞分裂を示している。.

新しい!!: DNA複製と細胞分裂 · 続きを見る »

細胞周期

細胞周期(さいぼうしゅうき; cell cycle)は、ひとつの細胞が二つの娘細胞を生み出す過程で起こる一連の事象、およびその周期のことをいう。細胞周期の代表的な事象として、ゲノムDNAの複製と分配、それに引き続く細胞質分裂がある。.

新しい!!: DNA複製と細胞周期 · 続きを見る »

細胞質

滑面小胞体 (9)ミトコンドリア (10)液胞 (11)'''細胞質''' (12)リソソーム (13)中心小体 細胞質(さいぼうしつ、cytoplasm)は、細胞の細胞膜で囲まれた部分である原形質のうち、細胞核以外の領域のことを指す。細胞質は細胞質基質の他、特に真核生物の細胞では様々な細胞小器官を含む。細胞小器官の多くは生体膜によって他の部分と隔てられている。細胞質は生体内の様々な代謝や、細胞分裂などの細胞活動のほとんどが起こる場所である。細胞質基質を意図して誤用される場合も多い。 細胞質のうち、細胞小器官以外の部分を細胞質基質または細胞質ゲルという。細胞質基質は複雑な混合物であり、細胞骨格、溶解した分子、水分などからなり、細胞の体積の大きな部分を占めている。細胞質基質はゲルであり、繊維のネットワークが溶液中に散らばっている。この細孔状のネットワークと、タンパク質などの高分子の濃度の高さのため、細胞質基質の中では分子クラウディングと呼ばれる現象が起こり、理想溶液にはならない。このクラウディングの効果はまた細胞質基質内部の反応も変化させる。.

新しい!!: DNA複製と細胞質 · 続きを見る »

緑色蛍光タンパク質

緑色蛍光タンパク質(りょくしょくけいこうタンパクしつ、green fluorescent protein、GFP)はオワンクラゲがもつ分子量約27 kDaの蛍光性をもつタンパク質である。1960年代に下村脩によってイクオリンとともに発見・分離精製された。下村はこの発見で2008年にノーベル化学賞を受賞した。.

新しい!!: DNA複製と緑色蛍光タンパク質 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: DNA複製と真核生物 · 続きを見る »

点突然変異

点突然変異あるいは1塩基置換は、遺伝物質DNAあるいはRNAの1ヌクレオチド塩基を別のヌクレオチド塩基に置換わる、つまりDNAやRNAのG、A、T、Cのうち一つ(一塩基)が別の塩基に置き換わってしまう突然変異のこと。 1塩基の欠失あるいは付加(挿入)はコドン(codon)の読み枠をそれ以降のDNAやRNA上で変更するフレームシフト変異を起こす、この場合、合成されたタンパク質はそのヌクレオチド上で異なる読み枠でトリプレットが読まれるため、もっと深刻な帰結をもたらす。これはフレームシフト突然変異と呼ばれる。.

新しい!!: DNA複製と点突然変異 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: DNA複製と生物学 · 続きを見る »

相同

同性(そうどうせい)あるいはホモロジー (homology) とは、ある形態や遺伝子が共通の祖先に由来することである。 外見や機能は似ているが共通の祖先に由来しない相似の対義語である。.

新しい!!: DNA複製と相同 · 続きを見る »

相互作用

互作用(そうごさよう)、交互作用(こうごさよう)、相互交流(そうごこうりゅう)、インタラクションとは、 interaction、 Interaktion 等にあてられた訳語・音写語であり、原語では広義には二つ以上の存在が互いに影響を及ぼしあうことを指している。 ヨーロッパ系の言語では、interaction(英語・フランス語)、Interaktion(ドイツ語)などと表記され、同系統の言葉である。根本にある発想が同一であり、国境や分野を超えてその根本概念は共有されている。一方、日本語には、あくまで前述の語の訳語として登場し、「交互作用」「相互作用」「相互交流」などの様々な訳語、あるいは「インタラクション」などの音写語などもあり、用いられる分野ごとに様々な表記で用いられている。ただし、これらのいかなるの訳語・音写語があてられていようが、等しく重要な概念である。 ヨーロッパ圏の人が interaction という語を使う時、その語の他分野での用法なども多かれ少なかれ意識しながら使っていることは多い。一方、訳語というものは絶対的なものではなく、同一分野ですら時代とともに変化することがある。原著で同一の語で表記されているものが、訳語の選択によって概念の連続性が分断されてしまい歴史が読み取れなくなることは非常に不便であるし、訳語の異同によって分野ごとに細分化されては原著者の深い意図が汲み取れなくなる恐れもある。よって、これらを踏まえて本項ではヨーロッパ諸言語で interaction 系の語(派生語の interactive なども含む)で表記される概念についてまとめて扱うこととし、各分野における標準的な和訳と、その分野での具体的な用法や概念の展開について、広く解説することにする。.

新しい!!: DNA複製と相互作用 · 続きを見る »

DNA修復

DNA修復(DNAしゅうふく、)とは、生物細胞において行われている、様々な原因で発生するDNA分子の損傷を修復するプロセスのことである。DNA分子の損傷は、細胞の持つ遺伝情報の変化あるいは損失をもたらすだけでなく、その構造を劇的に変化させることでそこにコード化されている遺伝情報の読み取りに重大な影響を与えることがあり、DNA修復は細胞が生存しつづけるために必要な、重要なプロセスである。生物細胞にはDNA修復を行う機構が備わっており、これらをDNA修復機構、あるいはDNA修復系と呼ぶ。.

新しい!!: DNA複製とDNA修復 · 続きを見る »

DNAポリメラーゼ

DNA ポリメラーゼ (DNA polymerase; -ポリメレース) は1本鎖の核酸を鋳型として、それに相補的な塩基配列を持つ DNA 鎖を合成する酵素の総称。一部のウイルスを除くすべての生物に幅広く存在する。DNA を鋳型としてDNA を合成する DNA 依存性 DNA ポリメラーゼ(EC 2.7.7.7)と、RNA を鋳型として DNA を合成する RNA 依存性 DNA ポリメラーゼ(EC 2.7.7.49)の、2つのタイプに分けられる。前者はDNA複製やDNA修復において中核的な役割を担う酵素である。一方後者はセントラルドグマの範疇から逸脱する位置にある酵素で、逆転写酵素やテロメラーゼを含む。.

新しい!!: DNA複製とDNAポリメラーゼ · 続きを見る »

DNAトポイソメラーゼ

DNAトポイソメラーゼ(DNA topoisomerases)とは、2本鎖DNAの一方または両方を切断し再結合する酵素の総称である。 環状の2重鎖DNAでは、2本の鎖は位相幾何学(トポロジー)的には結び目があるのと等価であり、ねじれ数の異なるDNA、つまりトポアイソマー(トポロジーの異なる異性体)は、DNA鎖を切らない限り互いに変換できない。トポイソメラーゼはこの変換(topoisomerization)を触媒する異性化酵素という意味で命名された。抗がん剤や抗生物質のターゲットとしても知られる。.

新しい!!: DNA複製とDNAトポイソメラーゼ · 続きを見る »

DNAプライマーゼ

DNA プライマーゼ (DNA primase) はDNA複製において RNA 断片(プライマー)を合成する酵素。 DNA プライマーゼは複製フォークにおいてDNAヘリカーゼに結合し、ラギング鎖に対して11塩基ほどのプライマーを合成し、岡崎フラグメント合成の足がかりとなる。DNA を合成するのはDNAポリメラーゼであるが、この酵素は既にある核酸断片を延長することしかできないことから、DNA プライマーゼによるプライマーの生成は DNA 複製において必須である。 DNA プライマーゼによって合成された RNA プライマーは複製の進行とともに除去される。直鎖状染色体の最も末端部分(テロメア)では、プライマーが除去されたのち複製ができない。このため複製の度に染色体が短くなっていくという「末端複製問題」が提起されたが、テロメアを合成する酵素テロメラーゼが発見されたことで一部解決した。 Category:EC 2.7.7 Category:DNA複製.

新しい!!: DNA複製とDNAプライマーゼ · 続きを見る »

DNA超らせん

図1 DNAの二重らせん構造 DNA超らせん(DNAちょうらせん、DNA superhelix)とは、DNAの二重らせんにさらにねじれを導入したときに生み出される高次のらせん構造のことをいう。DNAスーパーコイル(DNA supercoil)ともいう。.

新しい!!: DNA複製とDNA超らせん · 続きを見る »

遺伝子座

遺伝子座(いでんしざ)とは染色体やゲノムにおける遺伝子の位置のこと。英語などでは Locus(ローカス)と呼び、これはラテン語で場所を意味する単語。複数形は Loci(ローサイ)。 通常、転写される領域を指すが、転写調節領域を含む場合もある。二倍体における対立遺伝子どうしの遺伝子座は同一である。また、遺伝子に該当しないような塩基配列・遺伝マーカーの位置は座位(ざい)という。 染色体上の遺伝子座を記載したものを遺伝子地図とよぶ。また組み替え価から導き出された遺伝子間の距離を基に作成したものは連鎖地図と呼ばれる。ゲノムプロジェクトによってゲノムの塩基配列が解読されることによって、全遺伝子座が明らかになるはずであるが、miRNAや偽遺伝子、反復配列など解決すべき問題が残っている。 Category:遺伝子.

新しい!!: DNA複製と遺伝子座 · 続きを見る »

遺伝的組換え

遺伝的組換え(いでんてきくみかえ)は、狭義には、生物自身が遺伝子をコードするDNA鎖を途中で組み変える現象を差す。英語のRecombinationに相当する言葉として用いられる。広義には人工的な遺伝子組み換えも遺伝的組換えと記述される。.

新しい!!: DNA複製と遺伝的組換え · 続きを見る »

高分子

分子(こうぶんし)または高分子化合物(こうぶんしかごうぶつ)(macromolecule、giant molecule)とは、分子量が大きい分子である。国際純正・応用化学連合(IUPAC)の高分子命名法委員会では高分子macromoleculeを「分子量が大きい分子で、分子量が小さい分子から実質的または概念的に得られる単位の多数回の繰り返しで構成した構造」と定義し、ポリマー分子(polymer molecule)と同義であるとしている。また、「高分子から成る物質」としてポリマー(重合体、多量体、polymer)を定義している。すなわち、高分子は分子であり、ポリマーとは高分子の集合体としての物質を指す。日本の高分子学会もこの定義に従う。.

新しい!!: DNA複製と高分子 · 続きを見る »

転移RNA

転移RNA(てんい-、transfer RNA)は73〜93塩基の長さの小さなRNAである。リボソームのタンパク質合成部位でmRNA上の塩基配列(コドン)を認識し、対応するアミノ酸を合成中のポリペプチド鎖に転移させるためのアダプター分子である。運搬RNA、トランスファーRNAなどとも呼ぶが、通常tRNAと略記される。.

新しい!!: DNA複製と転移RNA · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: DNA複製と葉緑体 · 続きを見る »

重合反応

重合反応(じゅうごうはんのう、polymerization)とは重合体(ポリマー)を合成することを目的にした一群の化学反応の呼称である。また重合反応はその元となる反応の反応機構や化学反応種により細分化され、区分された反応名に重または重合の語を加えることで重合体合成反応であることを表す。.

新しい!!: DNA複製と重合反応 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: DNA複製と酵素 · 続きを見る »

酵母

酵母(こうぼ)またはイースト(英語:yeast)は、広義には生活環の一定期間において栄養体が単細胞性を示す真菌類の総称である。 狭義には、食品などに用いられて馴染みのある出芽酵母の一種 Saccharomyces cerevisiae を指し、一般にはこちらの意味で使われ、酵母菌と俗称されている。 広義の「酵母」は正式な分類群の名ではなく、いわば生活型を示す名称であり、系統的に異なる種を含んでいる。 狭義の酵母は、発酵に用いられるなど工業的に重要であり、遺伝子工学の主要な研究対象の1つでもある。明治時代にビール製法が輸入されたときに、yeast の訳として発酵の源を意味する字が当てられたのが語源であるが、微生物学の発展とともにその意味するところが拡大していった。.

新しい!!: DNA複製と酵母 · 続きを見る »

In vitro

(イン・ビトロ/ヴィトロ)とは、生物学の実験などにおいて、試験管内などの人工的に構成された条件下、すなわち、各種の実験条件が人為的にコントロールされた環境であることを意味する。語源はラテン語の「ガラスの中で(試験管内で)」。対立する概念は in vivo である。.

新しい!!: DNA複製とIn vitro · 続きを見る »

In vivo

(イン・ビボ)とは、「生体内で」を意味する用語であり、学術論文などにもしばしば登場する。由来はラテン語。.

新しい!!: DNA複製とIn vivo · 続きを見る »

SUMOタンパク質

SUMOタンパク質(SUMO protein)とは、細胞内の他のタンパク質に一時的に共有結合してその機能を助ける小さなタンパク質で、SUMOとはSmall Ubiquitin-related(like) Modifierという言葉の略である。タンパク質のSUMO化は翻訳後修飾の1つで、細胞核-細胞質の輸送、転写制御、アポトーシス、タンパク質の安定化、ストレス応答、細胞周期の進行など様々な細胞内のプロセスに関係する。 SUMOタンパク質はユビキチンとよく似ていて、SUMO化に関与する酵素も、ユビキチン化の一連の酵素のアナログである。ただしユビキチンがタンパク質分解のタグとなるのに対して、SUMOにはそのような機能はない。SUMOはC末端の4残基が切り落とされることによって完成する。 SUMOタンパク質には別名を持つものが多い。例えば酵母のSUMO1ホモログはSMT3と呼ばれる。またコードする遺伝子にはいくつかの偽遺伝子が存在するという報告もある。 iMolとPDBファイル1A5R、NMRを元に作られたヒトSUMO1タンパク質の構造図。タンパク質の構造はリボンで表現し、二次構造を着色している。N末端は青、C末端は赤である。 同じく、原子を球で表現したタンパク質の構造図。.

新しい!!: DNA複製とSUMOタンパク質 · 続きを見る »

抗体

免疫グロブリン(抗体)。色の薄い部分が軽鎖、先端の黒い部分が可変部。適合する抗原が可変部に特異的に結合する。 抗体(こうたい、antibody)とは、リンパ球のうちB細胞の産生する糖タンパク分子で、特定のタンパク質などの分子(抗原)を認識して結合する働きをもつ。抗体は主に血液中や体液中に存在し、例えば、体内に侵入してきた細菌やウイルス、微生物に感染した細胞を抗原として認識して結合する。抗体が抗原へ結合すると、その抗原と抗体の複合体を白血球やマクロファージといった食細胞が認識・貪食して体内から除去するように働いたり、リンパ球などの免疫細胞が結合して免疫反応を引き起こしたりする。これらの働きを通じ、脊椎動物の感染防御機構において重要な役割を担っている(無脊椎動物は抗体を産生しない)。1種類のB細胞は1種類の抗体しか作れないうえ、1種類の抗体は1種類の抗原しか認識できないため、ヒト体内では数百万〜数億種類といった単位のB細胞がそれぞれ異なる抗体を作り出し、あらゆる抗原に対処しようとしている。 「抗体」の名は、抗原に結合するという機能を重視した名称で、物質としては免疫グロブリン(めんえきグロブリン、immunoglobulin)と呼ばれ、「Ig(アイジー)」と略される。 全ての抗体は免疫グロブリンであり、血漿中のγ(ガンマ)ーグロブリンにあたる。.

新しい!!: DNA複製と抗体 · 続きを見る »

染色 (生物学)

染色(せんしょく)とは、特定の生物組織、細胞、オルガネラなどに、特殊な色素を用いて色を付ける実験技術のこと。特に、顕微鏡での観察をより容易にするため、観察に先立って染色が行われることが多い。例えば、組織中の一つの細胞を顕微鏡で観察する場合、そのままでも形態の違いだけから結合組織中の細胞や、細胞中の細胞核を見分けることは可能であるが、あらかじめ細胞質や核を染色すればそれぞれの観察が容易になる。 染色の原理には、観察する標本に含まれている特徴的な生体分子(タンパク質、核酸、脂質、炭化水素など)に対して、特定の色素が強く結合する性質を利用したものや、特定の酵素と反応して発色する基質を用いたものなどがある。用いる色素が蛍光色素(主に生物由来物や蛍光染料)の場合、特に蛍光染色と呼ばれる。観察しようとする対象と目的に応じて、さまざまな色素を用いた染色法が考案され、利用されている。 染色は生物学や医学のさまざまな分野で幅広く利用されている。組織学や病理学の分野では、特定の疾患に伴って起きる、組織や細胞の形態的な変化nの観察や、疾患の指標となる酵素やタンパク質の発現を確認するときなどに染色が用いられ、病気の診断などにも応用されている。微生物学の分野では、グラム染色などの染色法が、細菌の同定や形態観察に用いられている。一般的には微視的観察に用いられることが多いが、分類学や発生学の分野では、透明骨格標本の染色など、巨視的観察に用いられることもある。また生化学の分野では、生体から分離したタンパク質や核酸を電気泳動で分析するとき、これらの高分子を可視化するためにも利用されている。.

新しい!!: DNA複製と染色 (生物学) · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: DNA複製と染色体 · 続きを見る »

接合 (生物)

接合(せつごう)というのは、細胞間で生じる現象のひとつで、いわゆる有性生殖において重要な段階である。2つの細胞が互いに融合し、そこで核の融合などを生じる。生物群によって様々なやり方がある。 接合は、有性生殖における重要な段階であり、直接にはこのことを有性生殖と言う。具体的な内容は、生物群によって事なる部分がある。元来は真核生物について適用された語であり、その大部分では2つの細胞とその核の融合という、基本的に同じような形で行われる。しかし、真核生物でも繊毛虫においてはやや特殊な形態のものが古くから接合として知られ、そこでは2つの細胞は部分的に融合するだけで、互いの核の交換が行われる。また、細菌類においてもやや異なった様相の現象が接合と呼ばれている。 しかし、いずれの場合でも、他個体、あるいは他系統との間での遺伝子の交換が行われ、新たな組み合わせを生じるという点で、共通の意味を持つものと考えられ、有性生殖を構成する段階と考えられる。.

新しい!!: DNA複製と接合 (生物) · 続きを見る »

枯草菌

枯草菌(こそうきん)は、土壌や植物に普遍的に存在し、反芻動物やヒトの胃腸管に存在するグラム陽性の カタラーゼ陽性の真正細菌である。学名はBacillus subtilisである。片仮名表記ではしばしばバチルス・サブティリス日本細菌学会用語委員会編『微生物学用語集 英和・和英』南山堂、2007かバシラス・サチリス日本細菌学会用語委員会編『英和・和英微生物学用語集』第3版、菜根出版、1985が使用される。.

新しい!!: DNA複製と枯草菌 · 続きを見る »

核分裂

核分裂(かくぶんれつ).

新しい!!: DNA複製と核分裂 · 続きを見る »

有糸分裂

有糸分裂(ゆうしぶんれつ、Mitose、mitosis)とは、真核生物の細胞分裂における核分裂の様式の一つ。細胞分裂の際にクロマチンが染色体を形成し、この染色体が紡錘体によって分配される分裂様式のこと。有糸分裂を伴う細胞分裂のことを指して有糸分裂ということもある。対立する語は無糸分裂である。 正確にいえば、生殖細胞において相同染色体を分離させる減数分裂(meiosis)も有糸分裂の亜形である(減数有糸分裂)。しかし近年では、単に有糸分裂というときには減数分裂を含めないことが多い。この場合、有糸分裂という語は(本来の意味から離れるが)体細胞分裂とほぼ同義の語として用いられる。.

新しい!!: DNA複製と有糸分裂 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »