ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

SN比

索引 SN比

SN比(エスエヌひ)は、通信理論ないし情報理論あるいは電子工学などで扱われる値で、信号 (signal) と雑音 (noise) の比である。 信号雑音比 (signal-noise ratio) または 信号対雑音比 (signal-to-noise ratio) の略。S/N比、SNR、S/Nとも略す。 desired signal to undesired signal ratio、D/U ratio ともいう。 SN比が高ければ伝送における雑音の影響が小さく、SN比が小さければ影響が大きい。SN比が大きいことをSN比がよい、小さいことを悪いとも言う。.

40 関係: 偏差実効値対数帯域幅常用対数平均交流二乗平均平方根信号 (電気工学)ノイズピーク信号対雑音比デシベルデジタル信号ダイナミックレンジ分散 (確率論)シャノン=ハートレーの定理確率過程物理量直流音質質量輝度量子化誤差長さ電力電子工学電圧電気工学電流通信路容量SINADSNDR搬送波搬送波対雑音比正規分布測定情報理論明瞭度映像

偏差

偏差(へんさ)とは、ある母集団に属する数値と、母集団の平均値との差。 偏差は母集団内の要素1つ1つに対して定まるものである。 偏差は単純に引き算した結果であり母集団によってその大小が左右される。この変動を打ち消して、その要素が母集団の中ではどのくらい平均からずれているかの度合いを出したものが偏差値である。 無線工学で使用する場合は、無線局ごとに割り当てた送信周波数と空中線から実際に放射される周波数のずれを指す。電波法において使用する周波数帯ごとに許容範囲が決めている。.

新しい!!: SN比と偏差 · 続きを見る »

実効値

実効値(じっこうち、effective value, root mean square value, RMS)は、交流の電圧又は電流の表現方法の一種である。ある電気抵抗に交流電圧を加えた場合の1周期における平均電力と、同じ抵抗に直流電圧を加えた場合の電力が, 互いに等しくなるときに、この交流電圧と交流電流の実効値はそれぞれ, その直流電圧と直流電流と同じ値であると定義される。交流電力の計算に使用される電圧・電流は、通常は実効値で表示される。.

新しい!!: SN比と実効値 · 続きを見る »

対数

対数(たいすう、logarithm)とは、ある数 を数 の冪乗 として表した場合の冪指数 である。この は「底を とする の対数(x to base; base logarithm of )」と呼ばれ、通常は と書き表される。また、対数 に対する は(しんすう、antilogarithm)と呼ばれる。数 に対応する対数を与える関数を考えることができ、そのような関数を対数関数と呼ぶ。対数関数は通常 と表される。 通常の対数 は真数, 底 を実数として定義されるが、実数の対数からの類推により、複素数や行列などの様々な数に対してその対数が定義されている。 実数の対数 は、底 が でない正数であり、真数 が正数である場合この条件は真数条件と呼ばれる。 について定義される。 これらの条件を満たす対数は、ある と の組に対してただ一つに定まる。 実数の対数関数 はb に対する指数関数 の逆関数である。この性質はしばしば対数関数の定義として用いられるが、歴史的には対数の出現の方が指数関数よりも先であるネイピア数 のヤコブ・ベルヌーイによる発見が1683年であり、指数関数の発見もその頃である。詳細は指数関数#歴史と概観や を参照。。 y 軸を漸近線に持つ。.

新しい!!: SN比と対数 · 続きを見る »

帯域幅

帯域幅(たいいきはば)または、帯域(たいいき)、周波数帯域(しゅうはすうたいいき)、バンド幅(英: Bandwidth)とは、周波数の範囲を指し、一般にヘルツで示される。帯域幅は、情報理論、電波通信、信号処理、分光法などの分野で重要な概念となっている。 帯域幅と情報伝達における通信路容量とは密接に関連しており、通信路容量のことを指す代名詞のように俗称的にしばしば「帯域幅」の語が使われる。特に何らかの媒体や機器を経由して情報(データ)を転送する際の転送レートを「帯域幅」あるいは「バンド幅」と呼ぶ。.

新しい!!: SN比と帯域幅 · 続きを見る »

常用対数

常用対数(じょうようたいすう、common logarithm)は 10 を底とする対数のことである。数の表記で通常用いられる十進法表示と親和する。レベル表現の「ベル」などに使われている。.

新しい!!: SN比と常用対数 · 続きを見る »

平均

平均(へいきん、mean, Mittelwert, moyenne)または平均値(へいきんち、mean value)は、観測値の総和を観測値の個数で割ったものである。 例えば A、B、C という3人の体重がそれぞれ 55 kg、60 kg、80 kg であったとすると、3人の体重の平均値は (55 kg + 60 kg + 80 kg)/3.

新しい!!: SN比と平均 · 続きを見る »

交流

三角波、鋸歯状波 交流(こうりゅう、)とは、時間とともに周期的に向きが変化する電流(交流電流)を示す言葉であり、「交番電流」の略。また、同様に時間とともに周期的に大きさとその正負が変化する電圧を交流電圧というが、電流・電圧の区別をせずに交流または交流信号と呼ぶこともある。 交流の代表的な波形は正弦波であり、狭義の交流は正弦波交流()を指すが、広義には周期的に大きさと向きが変化するものであれば正弦波に限らない波形のものも含む。正弦波以外の交流は非正弦波交流()といい、矩形波交流や三角波交流などがある。.

新しい!!: SN比と交流 · 続きを見る »

二乗平均平方根

二乗平均平方根(にじょうへいきんへいほうこん、root mean square, RMS)はある統計値や確率変数を二乗した値の平均値の平方根である。結果として単位が元の統計値・確率変数と同じという点が特徴である。また、計算が積和演算であるため高速化が容易である。絶対値の平均より、用いられることがある。 ある量 に対して 個のデータが得られたとして、各データの の値を と名付けると、 の二乗平均平方根 は次のように定義される。 つまり、 の算術平均の平方根が の二乗平均平方根 となる。 例として、 個のデータがあり、それぞれ だったとすると、その二乗平均平方根は次のように計算できる。 \operatorname &.

新しい!!: SN比と二乗平均平方根 · 続きを見る »

信号 (電気工学)

信号(signal)は、電気通信や信号処理、さらには電気工学全般において、時間や空間に伴って変化する任意の量を意味する。 実世界では、時間と共に測定可能な量や、空間において測定可能な量を信号という。また人間社会では、人間の発する情報や機械のデータも信号とされる。そのような情報やデータ(例えば画面上のドット、紙上にインクで書かれたテキスト、あるいはこれを読んでいる人が見ている単語の列)は全て、何らかの物理的システムや生体的システムの一部として存在している。 システムの形態は様々だが、その入力と出力は時間または空間に伴って変化する値として表すことが可能である。20世紀後半、電気工学はいくつかの分野に分かれ、その一部は物理的信号とそのシステムを設計および解析する方向に特化してきた。また、一方では人間や機械の複雑なシステムの機能動作や概念構造を扱う分野も登場した。これらの工学分野は、単純な測定量としての信号を利用したシステムの設計/研究/実装の方法を提供し、それによって情報の転送/格納/操作の新たな手段が生み出されてきた。.

新しい!!: SN比と信号 (電気工学) · 続きを見る »

ノイズ

ノイズ (noise) とは、処理対象となる情報以外の不要な情報のことである。歴史的理由から雑音(ざつおん)に代表されるため、しばしば工学分野の文章などでは(あるいは日常的な慣用表現としても)音以外に関しても「雑音」と訳したり表現したりして、音以外の信号等におけるノイズの意味で扱っていることがある。西洋音楽では噪音(そうおん)と訳し、「騒音」や「雑音」と区別している。.

新しい!!: SN比とノイズ · 続きを見る »

ピーク信号対雑音比

ピーク信号対雑音比 は画質の再現性に影響を与える、信号が取りうる最大のパワー電気信号ならpowerを電力と訳すのは正しいが、画像の信号では、訳すならむしろ輝度などにする方が良い。しかしPSNRは画像以外の比較にも使用可能であるしパワー程度の単語なら理解されるためパワーとした。と劣化をもたらすノイズ音響の分野でnoiseを雑音と訳すのは正しいが、"画質の雑音"ではおかしいため、記事名称やSN比の表現とは統一がとれなくなるがノイズとした。の比率を表す工学用語で、しばしばPSNR(Peak signal-to-noise ratio) と略される。多くの信号はダイナミックレンジが非常に広いため、PSNR比は通常10を底にした常用対数で表される。 PSNRが最も一般的に使用されるのは、画像圧縮など非可逆圧縮を使ったコーデックの再現性の品質の尺度としてである。その場合の信号は元データであり、ノイズは圧縮によって生じた誤りである。通常はPSNRが高い方が高画質であるが、場合によっては低いPSNRにも関わらず元の画像に近いように人間に知覚される場合があるため、圧縮に用いるコーデック同士を比較する際はPSNR値はあくまで目安とすべきである。PSNRの数値を比較に用いる場合は適用可能な場合について注意を払わなければならない。数値が理論的に有効といえるのは同じコーデック(またはコーデックの種類)で同じ元の画像の結果を比較した場合のみである。 PSNRの最も簡単な定義はモノクロの2つの m×n の画像 I と K において、一方の画像が他方の画像よりもノイズにより劣化したものと見なされる時に、平均二乗誤差(MSE)を以下とした場合: PSNRの定義は次の通り: ここに、MAX I は画像が取りうる最大ピクセル値である。ピクセルが1サンプルあたり8ビットで表現されている場合、MAX I の値は255である。より一般的な表現をするなら、サンプルあたりBビットのリニアPCMで量子化これは意味的に元のアナログ信号をリニアPCMで量子化する事と解釈して意訳した。されている時、MAX I は 2 B -1 である。ピクセルごとに3つのRGB値を持つカラー画像についてのPSNRの定義は、MSEが、各色の差を2乗した物の総和を、画像サイズのさらに3で割ることを除いて同じである。他にも、YCbCrやHSLなど異なる色空間に変換されたカラー画像については、PSNRはそれぞれの色空間の各成分について計算する。 非可逆の画像およびビデオ圧縮におけるPSNRの標準的な値は30~50dBで、高い方が画質が良い。 無線通信において許容される品質の低下は約20dBから25dBの範囲と見なされる。 二つの画像が同一である場合、MSEはゼロである。この場合、PSNR値は定義できない(ゼロ除算を参照)。.

新しい!!: SN比とピーク信号対雑音比 · 続きを見る »

デシベル

デシベル(、記号: dB)は、電気工学や振動・音響工学などの分野で、物理量をレベル表現により表すときに使用される単位である。SIにおいてレベル表現として表される量には次元が与えられておらず、無次元量である。 ベルの語源は、アレクサンダー・グラハム・ベルが電話における電力の伝送減衰を表わすのに最初に用いたことに由来する。.

新しい!!: SN比とデシベル · 続きを見る »

デジタル信号

デジタル信号(Digital signal)は、離散信号の量子化されたもの、あるいはデジタルシステムでの信号の波形を指す。.

新しい!!: SN比とデジタル信号 · 続きを見る »

ダイナミックレンジ

ダイナミックレンジ()とは、識別可能な信号の最小値と最大値の比率をいう。信号の情報量を表すアナログ指標のひとつ。写真の場合、ラティチュードと 同じ意味で用いられることが多い。.

新しい!!: SN比とダイナミックレンジ · 続きを見る »

分散 (確率論)

率論および統計学において、分散(ぶんさん、variance)は、確率変数の2次の中心化モーメントのこと。これは確率変数の分布が期待値からどれだけ散らばっているかを示す非負の値である。 記述統計学においては標本が標本平均からどれだけ散らばっているかを示す指標として標本分散(ひょうほんぶんさん、sample variance)を、推測統計学においては不偏分散(ふへんぶんさん、unbiased (sample) variance)を用いる。 に近いほど散らばりは小さい。 日本工業規格では、「確率変数 からその母平均を引いた変数の二乗の期待値。 である。」と定義している。 英語の variance(バリアンス)という語はロナルド・フィッシャーが1918年に導入した。.

新しい!!: SN比と分散 (確率論) · 続きを見る »

シャノン=ハートレーの定理

ャノン・ハートレーの定理(Shannon–Hartley theorem)は、情報理論における定理であり、ガウスノイズを伴う理想的な連続アナログ通信路の通信路符号化を定式化したものである。この定理から、そのような通信路上で誤りなしで転送可能なデータ(すなわち情報)の最大量であるシャノンの通信路容量が求められる。このとき、ノイズの強さと信号の強さが与えられることで帯域幅が決定される。この定理の名称は、アメリカの2人の電子工学者クロード・シャノンとラルフ・ハートレーに由来している。.

新しい!!: SN比とシャノン=ハートレーの定理 · 続きを見る »

確率過程

率論において、確率過程(かくりつかてい、stochastic process)は、時間とともに変化する確率変数のことである。 株価や為替の変動、ブラウン運動などの粒子のランダムな運動を数学的に記述する模型(モデル)として利用している。不規則過程(random process)とも言う。.

新しい!!: SN比と確率過程 · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: SN比と物理量 · 続きを見る »

直流

流の波形 直流(ちょくりゅう、Direct Current, DC)は、時間によって大きさが変化しても流れる方向(正負)が変化しない「直流電流」の事である。同様に、時間によって方向が変化しない電圧を直流電圧という。狭義には、方向だけでなく大きさも変化しない電流、電圧のことを指し、流れる方向が一定で、電流・電圧の大きさが変化するもの(右図の下2つ)は脈流(pulsating current)という。直流と異なり、周期的に方向が変化する電流を交流という。.

新しい!!: SN比と直流 · 続きを見る »

音質

音質(おんしつ、sound quality)とは音や声の品質を表し、多くの場合電子機器などのオーディオ出力や音声出力の良し悪しの意味で用いられる。品質の内容はアプリケーションにより異なり、高音質のオーディオ機器では聴感上の原音への近さが、電話では明瞭度や了解度が重要になる。 音質は、人間が実際に音を聞いて判断する主観評価や、音の何らかの性質を測定して決める客観評価で定量化することができる。 音の物理的特性だけではなく人間の聴覚システムの特性が音質に大きな影響を与えるため、主観評価が音質評価の基本になるが、多くの評価者や専用の評価設備が必要で時間・コスト共に掛かり環境や評価者による評価のばらつきがあるため、音の物理的特性から主観評価値を推定する様々な客観品質評価法が研究されている。.

新しい!!: SN比と音質 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: SN比と質量 · 続きを見る »

輝度

輝度(きど、Luminance).

新しい!!: SN比と輝度 · 続きを見る »

量子化誤差

量子化誤差(りょうしかごさ、Quantization Error)または量子化歪み(りょうしかひずみ、Quantization Distortion)とは、信号をアナログからデジタルに変換する際に生じる誤差。 アナログ信号からデジタル信号への変換を行う際、誤差は避けられない。アナログ信号は連続的で無限の正確さを伴うが、デジタル信号の正確さは量子化の解像度やアナログ-デジタル変換回路のビット数に依存する。実際のアナログ値と変換時に「丸め」られた近似的デジタル値の差を量子化誤差と呼ぶ。また、誤差信号は確率過程のランダム信号を加えて量子化雑音(Quantization Noise)と呼ばれる。.

新しい!!: SN比と量子化誤差 · 続きを見る »

長さ

長さ(ながさ、length)とは、.

新しい!!: SN比と長さ · 続きを見る »

電力

電力(でんりょく、electric power)とは、単位時間に電流がする仕事(量)のことである。なお、「電力系統における電力」とは、単位時間に電気器具によって消費される電気エネルギーを言う。国際単位系(SI)においてはワット が単位として用いられる。 なお、電力を時間ごとに積算したものは電力量(electric energy)と呼び、電力とは区別される。つまり、電力を時間積分したものが電力量である。.

新しい!!: SN比と電力 · 続きを見る »

電子工学

電子工学(でんしこうがく、Electronics、エレクトロニクス)は、電気工学の一部ないし隣接分野で、電気をマクロ的に扱うのではなく、またそのエネルギー的な側面よりも信号などの応用に関して、電子の(特に量子的な)働きを活用する工学である。なお、電気工学の意の英語 electrical engineering に対し、エレクトロニクス(electronics)という語には、明確に「工学」という表現が表面には無い。.

新しい!!: SN比と電子工学 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: SN比と電圧 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: SN比と電気工学 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: SN比と電流 · 続きを見る »

通信路容量

通信路容量(つうしんろようりょう)または伝送路容量(でんそうろようりょう、Channel capacity)は、電気工学、計算機科学や情報理論において通信路に対して定義される量であり、通信路を介して確実に伝送できる情報の量の上限である。 通信路容量という概念は、その値の具体的な評価を可能にする数学モデルと併せて、クロード・シャノンが確立した情報理論において定義された。通信路容量は、通信路の入力と出力との間の相互情報量を、入力分布に関して最大化したときの最大値によって与えられる。通信路符号化定理によれば、ある通信路の通信路容量は、任意に小さい誤り率を要請した場合にその通信路を介して単位時間当たりに伝送可能な情報量の上限に等しい。.

新しい!!: SN比と通信路容量 · 続きを見る »

SINAD

SINADはSignal-to-noise and distortion ratioの略。 SINADは通信装置からの信号の質を示す指標であり、次式で定義されることが多い: \mathrm.

新しい!!: SN比とSINAD · 続きを見る »

SNDR

SNDRはSignal-to-noise and distortion ratioの略。純粋に信号を測定した時に発生するノイズと信号を \mathrm.

新しい!!: SN比とSNDR · 続きを見る »

搬送波

搬送波(はんそうは、carrier wave)とは、情報(信号)を搬送する(送る)ための波(波動)のこと。「wave」を略して「carrier キャリア」と呼ばれることもある。 電波、光(や音)といった波動に変調をかけることで信号(情報)を乗せる技術があり、その方式で通信する時に用いている波動のことを「carrier wave 搬送波」と呼ぶのである。 搬送波を変調することにより映像、音響、データ等の情報をのせる。あとは、無線であれ有線であれ、どんな経路でもよいからその搬送波を送れば、結果としてそこに含まれる信号(情報)も、一緒に送り届けることができる。 受信した側は、その波動を復調すれば、そこに含まれる信号(情報)を取り出すことができる。 情報を送る方法はいくつかあり、情報を加工せずにそのまま送るという方法(たとえば、2本の電線を引き、スイッチのOn/Offによる電圧の変化で 遠方に信号(情報)を伝えるようなモールス通信など)もあるが(そのほうが、原始的・単純であり、まず先にその方式が発明されたが)、その後、変調・復調を行う方式(=搬送波を用いる方式)が発明された。 それを、一般に「搬送通信」「多重搬送通信」という。 (搬送通信を行うための回路は若干複雑になりはするが) 搬送波を使ったほうが効率的に情報を送ることができることや、多重化(周波数分割多重)できるので、搬送波を利用することが一般的になった。.

新しい!!: SN比と搬送波 · 続きを見る »

搬送波対雑音比

電気通信において、搬送波対雑音比は変調信号の信号対雑音比 (SNR)。CNR や C/N とも書かれる。この言葉は無線周波数のパスバンド信号のCNRと、例えば可聴周波数のアナログメッセージ信号といった復調後のアナログベースバンドメッセージ信号のSNRと区別するために用いられる。区別する必要がない場合はSNRがCNRの代わりに同じ定義の言葉として用いられることがよくある。 ディジタル変調信号 (例えばQAM や PSK) は基本的に2つの連続搬送波 (位相のずれた搬送波であるI と Q成分) からなる。実際、情報 (ビットや符号) はI と Q成分の位相および/もしくは振幅の所与の組み合わせにより搬送される。この理由により、ディジタル変調の文脈においては、ディジタル変調された信号は普通、搬送波と呼ばれる。よって、信号対雑音比 (SNR) の代わりに使われる搬送波対雑音比 (CNR) という用語は、信号がディジタル変調されたときに信号の質を表現するのに好ましい言葉である。 高い C/N 比は、例えばディジタルメッセージ信号の低い符号誤り率 (BER) やアナログメッセージ信号の高いSNRなど、良い受信品質をもたらす。.

新しい!!: SN比と搬送波対雑音比 · 続きを見る »

正規分布

率論や統計学で用いられる正規分布(せいきぶんぷ、normal distribution)またはガウス分布(Gaussian distribution)は、平均値の付近に集積するようなデータの分布を表した連続的な変数に関する確率分布である。中心極限定理により、独立な多数の因子の和として表される確率変数は正規分布に従う。このことにより正規分布は統計学や自然科学、社会科学の様々な場面で複雑な現象を簡単に表すモデルとして用いられている。たとえば実験における測定の誤差は正規分布に従って分布すると仮定され、不確かさの評価が計算されている。 また、正規分布の確率密度関数のフーリエ変換は再び正規分布の密度関数になることから、フーリエ解析および派生した様々な数学・物理の理論の体系において、正規分布は基本的な役割を果たしている。 確率変数 が1次元正規分布に従う場合、X \sim N(\mu, \sigma^) 、確率変数 が 次元正規分布に従う場合、X \sim N_n(\mu, \mathit) などと表記される。.

新しい!!: SN比と正規分布 · 続きを見る »

比(ひ、ratio)とは2つ(または3つ以上)の数の関係を表したもの。数 a, b について、その比は a:b で表され、「a対b」とよむ。a を前項、b を後項(こうこう)という。また、前項と後項を入れ替えた b:a を元の比の逆比または反比という。3数以上の場合も a:b:c のように表し、特に連比(れんぴ)という。 例えば、テレビ受像機には様々な大きさがあるが、横の長さを4等分したものと縦の長さを3等分したもの, あるいは, 横の長さを16等分したものと縦の長さを9等分したものとが等しくなるのは, どの大きさのテレビでも変わらない。これをまとめて, それぞれ 4:3, 16:9 で表す。 比において、前項と後項に(0以外の)同じ数をかけたものも同じ比である。つまり、a:b.

新しい!!: SN比と比 · 続きを見る »

測定

測定(そくてい、Messung、mesure physique、measurement)は、様々な対象の量を、決められた一定の基準と比較し、数値と符号で表すことを指すJIS Z8103「計測用語」今井(2007)、p1-3 はじめに。人間の五感では環境や体調また錯視など不正確さから免れられず、また限界があるが、測定は機器を使うことでこれらの問題を克服し、科学の基本となる現象の数値化を可能とする。ただし、得られた値には常に測定誤差がつきまとい、これを斟酌した対応が必要となる。 ルドルフ・カルナップは1966年の著書『物理学の哲学的基礎』にて科学における主要な概念として、分類概念・比較概念・量的概念の3つを提示した。このうち、量的概念 (quantitative concept) を「対象が数値を持つ概念」と規定し、その把握には規則と客観的な手続きに則った判断が求められるとした。そしてこの物理学的測定は、測定する対象の性質や状態のメカニズム理論に基づいた尺度構成が重要になる。測定に関する理論および実践についての科学は、計量学(metrology)と呼ばれる。 測定の対象は自然科学だけにとどまらない。会計学においても貨幣的尺度を用いた評価や、企業の財務会計と適切なモデルを対応づけることなどを「測定」とするAmey,L.R.,A.ConceptualApproachtoManagement.NewYork:Prager,1986, p.130.

新しい!!: SN比と測定 · 続きを見る »

情報理論

情報理論(じょうほうりろん、Information theory)は、情報・通信を数学的に論じる学問である。応用数学の中でもデータの定量化に関する分野であり、可能な限り多くのデータを媒体に格納したり通信路で送ったりすることを目的としている。情報エントロピーとして知られるデータの尺度は、データの格納や通信に必要とされる平均ビット数で表現される。例えば、日々の天気が3ビットのエントロピーで表されるなら、十分な日数の観測を経て、日々の天気を表現するには「平均で」約3ビット/日(各ビットの値は 0 か 1)と言うことができる。 情報理論の基本的な応用としては、ZIP形式(可逆圧縮)、MP3(非可逆圧縮)、DSL(伝送路符号化)などがある。この分野は、数学、統計学、計算機科学、物理学、神経科学、電子工学などの交差する学際領域でもある。その影響は、ボイジャー計画の深宇宙探査の成功、CDの発明、携帯電話の実現、インターネットの開発、言語学や人間の知覚の研究、ブラックホールの理解など様々な事象に及んでいる。.

新しい!!: SN比と情報理論 · 続きを見る »

明瞭度

明瞭度(めいりょうど、articulation)は通信などでの音声品質を示す尺度の1つである。単音あるいは音節がどれだけ正確に相手に伝わるかを表す値で、正しく発音された単音や音節に対し、受話者が完全に了解できた数と送話した数との比をパーセントで表す。単音を用いたものを単音明瞭度(sound articulation)、音節の場合は音節明瞭度(sylable articulation)と呼ぶ。 明瞭度とそれに関連するさまざまな評価方法は、電話に代表される音声通信分野での評価、一定の音声品質が要求される駅やホールなどの建築物の設計や評価、補聴器の評価や難聴者の聴取能力の評価など、音声を扱う多くの分野で使われている。.

新しい!!: SN比と明瞭度 · 続きを見る »

映像

映像(えいぞう).

新しい!!: SN比と映像 · 続きを見る »

ここにリダイレクトされます:

D/U値D/U比DU値DU比S/N比シグナルノイズ比信号対雑音比信号雑音比

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »