ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ユビキノン

索引 ユビキノン

ユビキノン(略号:UQ)とは、ミトコンドリア内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、電子伝達系において呼吸鎖複合体IとIIIの電子の仲介を果たしている。ベンゾキノン(単にキノンでも良い)の誘導体であり、比較的長いイソプレン側鎖を持つので、その疎水性がゆえに膜中に保持されることとなる。酸化還元電位 (Eo') は+0.10V。ウシ心筋ミトコンドリア電子伝達系の構成成分として1957年に発見された。 広義には電子伝達体としての意味合いを持つが、狭義には酸化型のユビキノンのことをさす。還元型のユビキノンはユビキノールと呼称していることが多い。別名、補酵素Q、コエンザイムQ10(キューテン)、CoQ10、ユビデカレノンなど。かつてビタミンQと呼ばれたこともあるが、動物体内で合成することができるためビタミンではない。.

65 関係: 原核生物協和発酵キリン小児科学山本順寛三菱ガス化学応用生物学部心筋医学部医薬品医薬品の範囲に関する基準ナノメートルミトコンドリアチロシンメチル基メバロン酸経路メトキシ基ユビキノンワルファリンヘムプロトンポンプヒドロキシル化ビタミンニコチンアミドアデニンジヌクレオチドベンゾキノンイソペンテニル二リン酸イソプレンカネカコリスミ酸シトクロムシトクロムcシキミ酸経路出芽酵母立体配座細胞膜紅色細菌疎水性生体膜発酵非メバロン酸経路補酵素誘導体葉酸還元脱炭酸酸化酸化還元電位酸素電子電子伝達体電子伝達系...電磁波老人性難聴東京大学東京工科大学構造生物学横浜市立大学水素イオン波長有機化合物日清製粉グループ本社旭化成2007年4-ヒドロキシ安息香酸4-ヒドロキシ安息香酸ポリプレニルトランスフェラーゼ4-アミノ安息香酸 インデックスを展開 (15 もっと) »

原核生物

原核生物(げんかくせいぶつ、ラテン語: Prokaryota プローカリオータ、英語: Prokaryote プロカリオート)とは真核、つまり明確な境界を示す核膜を持たない細胞からなる生物のことで、すべて単細胞生物。 真核生物と対をなす分類で、性質の異なる真正細菌(バクテリア)と古細菌(アーキア)の2つの生物を含んでいる。.

新しい!!: ユビキノンと原核生物 · 続きを見る »

協和発酵キリン

協和発酵キリン株式会社(きょうわはっこうキリン)は、医療用医薬品事業・バイオケミカル事業等を行う、総合バイオメーカーである。キリンホールディングスの子会社で、キリングループに属する。.

新しい!!: ユビキノンと協和発酵キリン · 続きを見る »

小児科学

小児科学(しょうにかがく、pediatrics)は、新生児から思春期(だいたい15歳、中学校三年生頃まで)を対象として診療・研究を行う臨床医学の一分野。.

新しい!!: ユビキノンと小児科学 · 続きを見る »

山本順寛

山本 順寛(やまもと よりひろ、1953年1月 - )は、日本の工学者。東京工科大学元教授。博士(工学)。.

新しい!!: ユビキノンと山本順寛 · 続きを見る »

三菱ガス化学

三菱瓦斯化学株式会社(みつびしがすかがく、Mitsubishi Gas Chemical Company, Inc.)は、日本の化学メーカー。三菱グループの一員であり、三菱金曜会及び三菱広報委員会の会員企業である。.

新しい!!: ユビキノンと三菱ガス化学 · 続きを見る »

応用生物学部

応用生物学部(おうようせいぶつがくぶ)は、応用生物学(生体工学)を教育研究するために大学におかれる学部の1つである。.

新しい!!: ユビキノンと応用生物学部 · 続きを見る »

心筋

心筋(しんきん)は、心臓を構成する筋肉のことをいう。 心筋は、骨格筋と同じ横紋筋であるが、骨格筋は随意筋で多核の細胞でできているのに対して、心筋は単核(稀に2核)の細胞でできており、不随意筋である。また、ミトコンドリアが非常に多く存在しており、心筋が要求するエネルギーの大部分をまかなっている。心房には血圧と血流の制御に関連する心房性ナトリウム利尿ペプチドと呼ばれるペプチドホルモンを合成、分泌する心筋細胞が存在する。心筋細胞は介在板により結ばれ、心筋線維を形成する。心筋線維は静止時には細胞外に対して-50~-90mVの膜電位を有する。骨格筋の絶対不応期は1~3msecなのに対して、心筋の絶対不応期は200msecと長い。.

新しい!!: ユビキノンと心筋 · 続きを見る »

医学部

医学部(いがくぶ)は、大学において医学に関する研究・教育を行っているところ。また医学を専門に学ぶ課程である。.

新しい!!: ユビキノンと医学部 · 続きを見る »

医薬品

リタリン20mg錠。 医薬品(いやくひん)とは、ヒトや動物の疾病の診断・治療・予防を行うために与える薬品。使用形態としては、飲むもの(内服薬)、塗るもの(外用薬)、注射するもの(注射剤)などがある(剤形を参照)。 医師の診察によって処方される処方箋医薬品、薬局で買える一般用医薬品がある。医薬品は治験を行って有効性が示されれば新薬として承認され、新薬の発売から20年の期間が経過したらその特許がきれることで他の会社も販売可能となり、後発医薬品が製造される。 臨床試験による安全性の検証は限られたもので、グローバル化によって超国家的に薬の売り出し(ブロックバスター薬)を行っており、国際化されていない有害反応監視システムが手を打つ前に有害反応(副作用)の影響が広がる可能性がある。.

新しい!!: ユビキノンと医薬品 · 続きを見る »

医薬品の範囲に関する基準

医薬品の範囲に関する基準とは、厚生省薬務局長通知「無承認無許可医薬品の指導取締りについて」(昭和46年6月1日、薬発第476号)において(別紙)として示された「医薬品の範囲に関する基準」のこと。食薬区分を示す行政通知として存在している。.

新しい!!: ユビキノンと医薬品の範囲に関する基準 · 続きを見る »

ナノメートル

ナノメートル(nanometre、記号: nm)は、国際単位系の長さの単位で、10−9メートル (m).

新しい!!: ユビキノンとナノメートル · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: ユビキノンとミトコンドリア · 続きを見る »

チロシン

チロシン(tyrosine)または、4-ヒドロキシフェニルアラニン (4-hydroxyphenylalanine) は、細胞でのタンパク質生合成に使われる22のアミノ酸のうちの一つ。略号は Tyr または Y。コドンはUACとUAU。極性基を有するが必須アミノ酸ではない。tyrosineはギリシア語でチーズを意味するtyriに由来し、1846年にドイツ人化学者のユストゥス・フォン・リービッヒがチーズのカゼインから発見した。官能基または側鎖のときはチロシル基と呼ばれる。.

新しい!!: ユビキノンとチロシン · 続きを見る »

メチル基

メチル基の構造式 メチル基(メチルき、methyl group)とは、有機化学において、-CH3 と表される最も分子量の小さいアルキル置換基である。特にヒドロキシ基やメルカプト基(チオール基)に対する保護基にも利用される。この名称は、IUPAC命名法の置換命名法のルールによりメタン (methane) の呼称から誘導されたものである。そして構造式で表記する場合はMeと略される。 メチル基は隣接基効果として、電子供与性を示す。このことは、超共役の考え方で説明される。(記事 有機電子論に詳しい).

新しい!!: ユビキノンとメチル基 · 続きを見る »

メバロン酸経路

メバロン酸経路(メバロンさんけいろ)はテルペノイドやステロイド合成の出発物質であるイソペンテニル二リン酸およびジメチルアリル二リン酸をアセチルCoAから合成する生合成経路である。イソペンテニル二リン酸を合成する生合成経路は他に非メバロン酸経路がある。律速段階はヒドロキシメチルグルタリルCoA (HMG-CoA) がメバロン酸に還元される反応であり、これが名称の由来である。.

新しい!!: ユビキノンとメバロン酸経路 · 続きを見る »

メトキシ基

メトキシ基(—き、methoxy group)とは、有機化学において構造式が CH3O- と表される1価の官能基。メチルオキシ基。アルコキシ基の一種。.

新しい!!: ユビキノンとメトキシ基 · 続きを見る »

ユビキノン

ユビキノン(略号:UQ)とは、ミトコンドリア内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、電子伝達系において呼吸鎖複合体IとIIIの電子の仲介を果たしている。ベンゾキノン(単にキノンでも良い)の誘導体であり、比較的長いイソプレン側鎖を持つので、その疎水性がゆえに膜中に保持されることとなる。酸化還元電位 (Eo') は+0.10V。ウシ心筋ミトコンドリア電子伝達系の構成成分として1957年に発見された。 広義には電子伝達体としての意味合いを持つが、狭義には酸化型のユビキノンのことをさす。還元型のユビキノンはユビキノールと呼称していることが多い。別名、補酵素Q、コエンザイムQ10(キューテン)、CoQ10、ユビデカレノンなど。かつてビタミンQと呼ばれたこともあるが、動物体内で合成することができるためビタミンではない。.

新しい!!: ユビキノンとユビキノン · 続きを見る »

ワルファリン

ワルファリン(Warfarin)は、抗凝固剤の1つ。殺鼠剤としても用いる。ワルファリンカリウムが医薬品として使われ、商品名はワーファリン。投与方法は経口(内服)のみである。.

新しい!!: ユビキノンとワルファリン · 続きを見る »

ヘム

ヘムaの構造 ヘムbの構造 ヘム(英語: Haem、米語: Heme、ドイツ語: Häm)は、2価の鉄原子とポルフィリンから成る錯体である。通常、2価の鉄とIX型プロトポルフィリンからなるプロトヘムであるフェロヘムのことをさすことが多い。ヘモグロビン、ミオグロビン、ミトコンドリアの電子伝達系(シトクロム)、薬物代謝酵素(P450)、カタラーゼ、一酸化窒素合成酵素、ペルオキシダーゼなどのヘムタンパク質の補欠分子族として構成する。ヘモグロビンは、ヘムとグロビンから成る。ヘムの鉄原子が酸素分子と結合することで、ヘモグロビンは酸素を運搬している。 フェリヘムやヘモクロム、ヘミン、ヘマチンなど、その他のポルフィリンの鉄錯体もヘムと総称されることもある。.

新しい!!: ユビキノンとヘム · 続きを見る »

プロトンポンプ

プロトンポンプ (Proton Pump) は、生物体内で光エネルギーなどを利用して水素イオン(プロトン)を能動輸送し、生体膜の内外に膜電位やプロトン勾配を作り出す機能、またはそれを行うタンパク質複合体をいう。プロトンポンプによって形成されたプロトン勾配はATP合成などに利用される。ATP合成酵素自身も逆反応として、ATPの加水分解によるエネルギーを利用してプロトンポンプとして働くことができる。胃酸の分泌にもこのATPをエネルギー源とするタイプのプロトンポンプが働いている。 高度好塩菌の表面に存在する紫膜では、バクテリオロドプシンと呼ばれるタンパク質が配向しており、光エネルギーを利用しプロトンポンプ機能を発現している。このほか光合成反応中心(光による)や、電子伝達系(酸化還元による)もプロトンポンプ機能を持っている。.

新しい!!: ユビキノンとプロトンポンプ · 続きを見る »

ヒドロキシル化

ヒドロキシル化(ヒドロキシルか)は、有機化合物に酸化あるいは置換反応させながら1つ以上のヒドロキシ基を導入する反応である。生化学では、酸化還元酵素の一つであるヒドロキシラーゼによって容易に起こる。.

新しい!!: ユビキノンとヒドロキシル化 · 続きを見る »

ビタミン

ビタミン(ヴィタミン、 )は、生物の生存・生育に微量に必要な栄養素のうち、炭水化物・タンパク質・脂質以外の有機化合物の総称である(なお栄養素のうち無機物はミネラルである)。 生物種によってビタミンとして働く物質は異なる。たとえばアスコルビン酸はヒトにはビタミンCだが、多くの生物にはそうではない。ヒトのビタミンは13種が認められている。 ビタミンは機能で分類され、物質名ではない。たとえばビタミンAはレチナール、レチノールなどからなる。 ビタミンはほとんどの場合、生体内で十分量合成することができないので、主に食料から摂取される(一部は腸内細菌から供給される)。ビタミンが不足すると、疾病や成長障害が起こりうる(ビタミン欠乏症)。日本では厚生労働省が日本人の食事摂取基準によって各ビタミンの指標を定めており、摂取不足の回避を目的とする3種類の指標と、過剰摂取による健康障害の回避を目的とする指標、及び生活習慣病の予防を目的とする指標から構成されている。.

新しい!!: ユビキノンとビタミン · 続きを見る »

ニコチンアミドアデニンジヌクレオチド

ニコチンアミドアデニンジヌクレオチド (nicotinamide adenine dinucleotide) とは、全ての真核生物と多くの古細菌、真正細菌で用いられる電子伝達体である。さまざまな脱水素酵素の補酵素として機能し、酸化型 (NAD) および還元型 (NADH) の2つの状態を取り得る。二電子還元を受けるが、中間型は生じない。略号であるNAD(あるいはNADでも同じ)のほうが論文や口頭でも良く使用されている。またNADH2とする人もいるが間違いではない。 かつては、ジホスホピリジンヌクレオチド (DPN)、補酵素I、コエンザイムI、コデヒドロゲナーゼIなどと呼ばれていたが、NADに統一されている。別名、ニコチン酸アミドアデニンジヌクレオチドなど。.

新しい!!: ユビキノンとニコチンアミドアデニンジヌクレオチド · 続きを見る »

ベンゾキノン

ベンゾキノン (benzoquinone) とは、分子式C6H4O2で表される有機化合物であり、炭素のみで構成された1つの6員環からなるキノンである。2種類の構造異性体が存在し、1,4-ベンゾキノン(パラ-ベンゾキノン、p-ベンゾキノン、パラ-キノン、just quinone)が一般的であり、1,2-ベンゾキノン(オルト-ベンゾキノン、o-ベンゾキノン、オルト-キノン)は一般的ではない。.

新しい!!: ユビキノンとベンゾキノン · 続きを見る »

イソペンテニル二リン酸

イソペンテニル二リン酸(イソペンテニルにリンさん、isopentenyl diphosphate、IPP)は、テルペンとテルペノイドを合成するメバロン酸経路の中間生成物である。.

新しい!!: ユビキノンとイソペンテニル二リン酸 · 続きを見る »

イソプレン

イソプレン(isoprene)は構造式CH2.

新しい!!: ユビキノンとイソプレン · 続きを見る »

カネカ

株式会社 カネカ(英称:Kaneka Corporation)は、大阪府大阪市北区中之島と東京都港区赤坂に本社を置く日本の化学メーカーである。.

新しい!!: ユビキノンとカネカ · 続きを見る »

コリスミ酸

リスミ酸(コリスミさん、chorismic acid)は、植物の代謝過程の中間体として存在する重要な物質の一つ。シキミ酸経路上でシキミ酸から3ステップの反応により生成し、経路の分岐点となっている。フェニルアラニン、チロシンなどの芳香族アミノ酸やトリプトファンなどのインドール化合物、植物ホルモンのサリチル酸や多くのアルカロイドなど、様々な生体物質の原料となる。.

新しい!!: ユビキノンとコリスミ酸 · 続きを見る »

シトクロム

トクロム(cytochrome, cyt、Zytochrom, Cytochrom)は、酸化還元機能を持つヘム鉄を含有する、ヘムタンパク質の一種である。1886年にMacMunnによって存在が指摘され、1925年にデーヴィッド・ケイリン によるウマの胃に寄生するヒツジバエ科ウマバエ幼虫を用いた研究によって酸化還元機能を持ち好気呼吸に重要な役割を持つことが実証された。 チトクロム、サイトクロム、シトクロームなどと呼ばれることもある。.

新しい!!: ユビキノンとシトクロム · 続きを見る »

シトクロムc

トクロムc(cytochrome c, cyt c)は、ミトコンドリアの内膜に弱く結合しているヘムタンパク質の一種である。タンパク質のシトクロムcファミリーに属する。他のシトクロムと異なり可溶性(100 g/L)で、電子伝達系において不可欠な因子である。電子伝達系では複合体IIIから1電子を受け取り、複合体IVに1電子を引き渡す。酸化型をフェリシトクロムc、還元型をフェロシトクロムcと呼ぶこともある。ヒトではシトクロムcは CYCS 遺伝子にコードされている。.

新しい!!: ユビキノンとシトクロムc · 続きを見る »

シキミ酸経路

ミ酸経路(シキミさんけいろ、shikimic acid pathway)は芳香族アミノ酸(チロシン、フェニルアラニンおよびトリプトファン)の生合成反応経路である。間接的にフラボノイドやアルカロイド(モルヒネ(チロシン由来)、キニーネ(トリプトファン由来)等)などの生合成にも必要。微生物や植物の大半は有しているが動物には見られない。 出発反応は解糖系のホスホエノールピルビン酸とペントースリン酸経路のエリトロース-4-リン酸の縮合反応で始まる。反応はコリスミ酸で各アミノ酸への反応に分岐するので、ここまでをシキミ酸経路としている場合もある。.

新しい!!: ユビキノンとシキミ酸経路 · 続きを見る »

出芽酵母

出芽酵母(しゅつがこうぼ, 英語: budding yeast)は出芽によって増える酵母の総称であるが、普通は Saccharomyces cerevisiae をさす。.

新しい!!: ユビキノンと出芽酵母 · 続きを見る »

立体配座

立体配座(りったいはいざ、Conformation)とは、単結合についての回転や孤立電子対を持つ原子についての立体反転によって相互に変換可能な空間的な原子の配置のことである。 二重結合についての回転や不斉炭素についての立体反転のように通常の条件では相互に変換不可能な空間的な原子の配置は立体配置という。.

新しい!!: ユビキノンと立体配座 · 続きを見る »

細胞膜

動物細胞の模式図図中の皮のように見えるものが'''細胞膜'''、(1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体 細胞膜(さいぼうまく、cell membrane)は、細胞の内外を隔てる生体膜。形質膜や、その英訳であるプラズマメンブレン(plasma membrane)とも呼ばれる。 細胞膜は細胞内外を単に隔てている静的な構造体ではなく、特異的なチャンネルによってイオンなどの低分子を透過させたり、受容体を介して細胞外からのシグナルを受け取る機能、細胞膜の一部を取り込んで細胞内に輸送する機能など、細胞にとって重要な機能を担っている。.

新しい!!: ユビキノンと細胞膜 · 続きを見る »

紅色細菌

紅色細菌(こうしょくさいきん、purple bacteria)は、光合成細菌のうち酸素を発生せず、カロテノイドの蓄積により赤色ないし褐色を呈するものの総称である。広義には非光合成性で色調も異なる細菌を多数含む類縁の細菌群全てを紅色細菌と呼び、その中で光合成能を有するものもしくは光合成器官や光合成色素を有するものだけを紅色光合成細菌として区別する場合がある。狭義の紅色細菌は、栄養的分類の観点からさらに紅色硫黄細菌と紅色非硫黄細菌とに区分され、一般的にこれらは分けて論じられる。 本項では主に狭義の紅色細菌(紅色光合成細菌)について述べる。広義の紅色細菌についてはプロテオバクテリアを、また紅色硫黄細菌については紅色硫黄細菌の項も参照のこと。 具体的な紅色細菌の例として、Rhodobacter sphaeroidesやBlastochloris viridis(旧名Rhodopseudomonas viridis)などがあげられる。.

新しい!!: ユビキノンと紅色細菌 · 続きを見る »

疎水性

水性、本表記は疏水性(そすいせい、形容詞:hydrophobic、名詞:hydrophobicity)とは、水に対する親和性が低い、すなわち水に溶解しにくい、あるいは水と混ざりにくい物質または分子(の一部分)の性質のことである。 疎水性物質は一般に、電気的に中性の非極性物質であり、分子内に炭化水素基をもつ物質が代表的である。脂質や非極性有機溶媒との親和性を示す「親油性」(しんゆせい、lipophilic)も同義で用いられることが多いが、疎水性物質が全て親油性であるとは限らず、シリコーンやフルオロアルキル鎖を持つ化合物などの例外もある。 対義語は「親水性」(しんすいせい、hydrophilic)である。一般的に極性の高いまたは電荷を有する化合物は親水性を示す。これの例外としては「不溶性の塩」などがあげられる。 分子内にある疎水性、親水性の部分をそれぞれ「疎水性基」、「親水性基」という。また分子内に疎水性基と親水性基の両方を持つ物質は「両親媒性」(りょうしんばいせい、amphiphilic)であるといい、界面活性剤や極性脂質が代表的である。 疎水性の高い物質は体内に蓄積しやすく、環境中でも残留しやすい傾向がある。典型的な例としては有機塩素系殺虫剤DDTやPCBなどがある。.

新しい!!: ユビキノンと疎水性 · 続きを見る »

生体膜

生体膜(せいたいまく)とは細胞や細胞小器官の有する、その外界との境界の膜のことで、特有の構造を持つ。厚さ7~10nm。種類は以下のようなものがある。.

新しい!!: ユビキノンと生体膜 · 続きを見る »

発酵

酵(はっこう。醱酵とも表記).

新しい!!: ユビキノンと発酵 · 続きを見る »

非メバロン酸経路

非メバロン酸経路(ひメバロンさんけいろ、non-mevalonate pathway)は、イソペンテニル二リン酸(IPP)とジメチルアリル二リン酸(DMAPP)の生合成経路である。 代謝中間体として2-C-メチル-D-エリトリトール-4-リン酸(MEP)および1-デオキシ-D-キシルロース-5-リン酸(DXPまたはDOXP)を生合成することから、MEP経路、DXP経路、DOXP経路、MEP/DOXP経路とも呼ばれる。多くの細菌や植物の葉緑体は非メバロン酸経路によりIPPとDMAPPを生合成する。一方で真核生物や植物の細胞質などは非メバロン酸経路ではなくメバロン酸経路によってIPPが生合成される。.

新しい!!: ユビキノンと非メバロン酸経路 · 続きを見る »

補酵素

補酵素(ほこうそ、coenzyme)は、酵素反応の化学基の授受に機能する低分子量の有機化合物である。コエンザイム、コエンチーム、助酵素などとも呼ばれる。 一般に補酵素は酵素のタンパク質部分と強い結合を行わず可逆的に解離して遊離型になる(反対に不可逆的な解離を行うものは補欠分子族と呼ばれる)。補酵素の多くはビタミンとして良く知られており、生物の生育に関する必須成分(栄養素)として良く知られている。.

新しい!!: ユビキノンと補酵素 · 続きを見る »

誘導体

誘導体(ゆうどうたい、derivative)は、有機化学の用語のひとつで、ある有機化合物を母体として考えたとき、官能基の導入、酸化、還元、原子の置き換えなど、母体の構造や性質を大幅に変えない程度の改変がなされた化合物のこと。その改変は実際の化学反応として行えることもあるが、机上のものでも構わない。 例えば、クロロベンゼンはベンゼンのクロロ誘導体、チオフェノールはフェノールのチオ誘導体と表現される。.

新しい!!: ユビキノンと誘導体 · 続きを見る »

葉酸

葉酸(ようさん、)はビタミンB群の一種。ビタミンM、ビタミンB9、プテロイルグルタミン酸とも呼ばれる。水溶性ビタミンに分類される生理活性物質である。プテリジンにパラアミノ安息香酸とグルタミン酸が結合した構造を持つ。1941年に乳酸菌の増殖因子としてホウレンソウの葉から発見された。葉はラテン語で folium と呼ばれることから葉酸 (folic acid) と名付けられた。葉酸は体内で還元を受け、ジヒドロ葉酸を経てテトラヒドロ葉酸に変換された後に補酵素としてはたらく。.

新しい!!: ユビキノンと葉酸 · 続きを見る »

還元

還元(かんげん、英:reduction)とは、対象とする物質が電子を受け取る化学反応のこと。または、原子の形式酸化数が小さくなる化学反応のこと。具体的には、物質から酸素が奪われる反応、あるいは、物質が水素と化合する反応等が相当する。 目的化学物質を還元する為に使用する試薬、原料を還元剤と呼ぶ。一般的に還元剤と呼ばれる物質はあるが、反応における還元と酸化との役割は物質間で相対的である為、実際に還元剤として働くかどうかは、反応させる相手の物質による。 還元反応が工業的に用いられる例としては、製鉄(原料の酸化鉄を還元して鉄にする)などを始めとする金属の製錬が挙げられる。また、有機合成においても、多くの種類の還元反応が工業規模で実施されている。.

新しい!!: ユビキノンと還元 · 続きを見る »

脱炭酸

脱炭酸(だつたんさん、Decarboxylation)は有機反応の形式のひとつで、カルボキシル基 (−COOH) を持つ化合物から二酸化炭素 (CO2) が抜け落ちる反応を指す。.

新しい!!: ユビキノンと脱炭酸 · 続きを見る »

酸化

酸化(さんか、英:oxidation)とは、対象の物質が酸素と化合すること。 例えば、鉄がさびて酸化鉄になる場合、鉄の電子は酸素(O2)に移動しており、鉄は酸化されていることが分かる。 目的化学物質を酸化する為に使用する試薬、原料を酸化剤と呼ぶ。ただし、反応における酸化と還元との役割は物質間で相対的である為、一般的に酸化剤と呼ぶ物質であっても、実際に酸化剤として働くかどうかは、反応させる相手の物質による。.

新しい!!: ユビキノンと酸化 · 続きを見る »

酸化還元電位

酸化還元電位(さんかかんげんでんい、Redox potentialもしくはOxidation-reduction Potential; ORP)とは、ある酸化還元反応系における電子のやり取りの際に発生する電位(正しくは電極電位)のことである。物質の電子の放出しやすさ、あるいは受け取りやすさを定量的に評価する尺度でもある。単位はボルト(V)を用い、電極電位の基準には以下の半反応式で表される酸化還元反応を用いる。 つまり水素ガス分圧が1気圧、水素イオンの活量が1のとき(これを標準水素電極と呼ぶ)の電極電位を0 Vと定義する。この半反応を基準とし、任意の酸化還元反応の電極電位が決定される。すなわち、標準水素電極(SHE; standard hydrogen electrodeもしくはNHE; normal hydrogen electrode)を陰極反応、電極電位を求めたい酸化還元反応を陽極反応にそれぞれ使い、電池を組み立てたときの電池の起電力が、求めたい電極電位となる。このとき、電極電位を求めたい酸化還元反応に関与する物質の活量(あるいは分圧)がすべて1の場合の電極電位を特に、標準酸化還元電位(ひょうじゅん-)あるいは標準電極電位と呼んでいる。 なお基準として用いた標準水素電極(SHE)は水素イオンの活量が1すなわち水素イオン指数がゼロ(pH 0)の環境であり生化学ではこうした極限状態の値では参考にならないためにpH 7での電位を求める中間酸化還元電位(ちゅうかん-、中点とも表記することがある)を基準に用いることがあるが、特に断ることなしにこれを単に酸化還元電位と書くことが多い。いずれにせよ、実際の研究では標準水素電極の代わりに、銀−塩化銀電極やカロメル電極など実用的な基準電極を基準にして酸化還元電位を測定することが頻繁に行なわれる。したがって、酸化還元電位を表記する際(特に標準水素電極以外の基準電極を用いた場合)には、その旨を必ず明記せねばならない。.

新しい!!: ユビキノンと酸化還元電位 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: ユビキノンと酸素 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: ユビキノンと電子 · 続きを見る »

電子伝達体

電子伝達体(でんしでんたつたい)とは生体内における電子伝達反応を担う化合物の総称である。電子伝達体の多くには、補酵素、補欠分子族あるいはそれに含まれない多くの物質が含まれているが、その全てが電子を受け取る「酸化型」および電子を与える「還元型」の2つの状態を取る。また二電子還元を受けるものでは中間型(一電子還元型)も取り得る。別名水素伝達体、電子伝達物質など。.

新しい!!: ユビキノンと電子伝達体 · 続きを見る »

電子伝達系

真核生物では、ミトコンドリアの電子伝達鎖は酸化的リン酸化の場となる。クエン酸回路で作られたNADHとコハク酸は酸化され、ATP合成酵素にエネルギーを与える。 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。.

新しい!!: ユビキノンと電子伝達系 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: ユビキノンと電磁波 · 続きを見る »

老人性難聴

老人性難聴(ろうじんせいなんちょう)とは、加齢が原因の聴覚障害のことである。感音性難聴が多い。一般的には「耳が遠い」という言い方をする。中途失聴者とは異なる。 聴覚に関わる細胞の減少・老化により、聴力が低下する。通常は50歳を超えると聴力が急激に低下し、60歳以上になると会話の面で不便になり始める。しかし、進行状況は個人差が大きいので、40代で補聴器が必要になる人もいれば、80代を超えてもほとんど聴力が低下しない人もいる。 老人性難聴は、低音域ではあまり聴力の低下はないようである(とはいえ、進行すれば中・低音域もやや聞こえづらくなる場合も多い)が、高音域においての聴力低下が非常に顕著であり、そのため子音を含む人間の言葉(特に「あ」行や「さ」行が正しく聞き取れない事が多い)が聞き取りにくくなり、特に女性の声ではそれが顕著である。そのためドアの開く音とか車のエンジンの音、足音などといった物音に非常に鋭敏になるという特性もある。また雑踏の中などのように、複数の音が錯乱している中での会話などが聞きづらくなったり、レコードを掛けていたり、映画などを鑑賞中、音楽で高音域が聞こえづらくなり、ぼやけて聞こえるなどの現象も自覚するようになる。 補聴器をつける事で、会話の不便さはある程度改善される。また、 老化以外の原因で聴力が低下した「中途失聴」とは区別する。.

新しい!!: ユビキノンと老人性難聴 · 続きを見る »

東京大学

記載なし。

新しい!!: ユビキノンと東京大学 · 続きを見る »

東京工科大学

東京工科大学基本理念より引用。 1.

新しい!!: ユビキノンと東京工科大学 · 続きを見る »

構造生物学

構造生物学(こうぞうせいぶつがく、)とは、生物を形作る巨大な生体高分子、特にタンパク質や核酸の立体構造を研究する生物学の一分野。結晶学、NMRなどの技術を用いる。タンパク質の立体構造の理論的推定についてはタンパク質構造予測を参照。.

新しい!!: ユビキノンと構造生物学 · 続きを見る »

横浜市立大学

記載なし。

新しい!!: ユビキノンと横浜市立大学 · 続きを見る »

水素イオン

水素イオン (hydrogen ion) という用語は、国際純正・応用化学連合によって、水素及びその同位体の全てのイオンを表す一般名として勧告されている。イオンの電荷に依って、陽イオンと陰イオンの2つの異なる分類に分けることができる。.

新しい!!: ユビキノンと水素イオン · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: ユビキノンと波長 · 続きを見る »

有機化合物

有機化合物(ゆうきかごうぶつ、organic compound)は、炭素を含む化合物の大部分をさす『岩波 理化学辞典』岩波書店。炭素原子が共有結合で結びついた骨格を持ち、分子間力によって集まることで液体や固体となっているため、沸点・融点が低いものが多い。 下記の歴史的背景から、炭素を含む化合物であっても、一酸化炭素、二酸化炭素、炭酸塩、青酸、シアン酸塩、チオシアン酸塩等の単純なものは例外的に無機化合物と分類し、有機化合物には含めない。例外は慣習的に決められたものであり『デジタル大辞泉』には、「炭素を含む化合物の総称。ただし、二酸化炭素・炭酸塩などの簡単な炭素化合物は習慣で無機化合物として扱うため含めない。」と書かれている。、現代では単なる「便宜上の区分」である。有機物質(ゆうきぶっしつ、organic substance『新英和大辞典』研究社)あるいは有機物(ゆうきぶつ、organic matter『新英和大辞典』研究社)とも呼ばれるあくまで別の単語であり、同一の概念ではない。。.

新しい!!: ユビキノンと有機化合物 · 続きを見る »

日清製粉グループ本社

株式会社日清製粉グループ本社(にっしんせいふんグループほんしゃ、Nisshin Seifun Group Inc.)は、日清製粉グループの持株会社である。.

新しい!!: ユビキノンと日清製粉グループ本社 · 続きを見る »

旭化成

旭化成株式会社(あさひかせい)は、化学、繊維、住宅、建材、エレクトロニクス、医薬品、医療等の事業を行う日本の会社である。東京都千代田区神田神保町に本社を置く。戦前は日窒コンツェルンの一部だったが日本の敗戦にともなう財閥解体により資本関係が絶たれ、1946年4月に日窒化学が旭化成工業(株)と改名して独立企業体として誕生した。.

新しい!!: ユビキノンと旭化成 · 続きを見る »

2007年

この項目では、国際的な視点に基づいた2007年について記載する。.

新しい!!: ユビキノンと2007年 · 続きを見る »

4-ヒドロキシ安息香酸

4-ヒドロキシ安息香酸 (4-ヒドロキシあんそくこうさん、4-hydroxybenzoic acid) または p-ヒドロキシ安息香酸 (パラヒドロキシあんそくこうさん)とは、安息香酸のパラヒドロキシ誘導体。アルコールやエーテル、アセトンには易溶で、水やクロロホルムにわずかに溶ける無色の結晶。サリチル酸(2-ヒドロキシ安息香酸)の位置異性体にあたる。 生体内ではユビキノン合成などの中間体として重要であり、動物、植物、微生物を含め幅広い生物が合成している。したがって食品中にも存在しており、ココナツやアサイーなどには多く含まれている。4-ヒドロキシ安息香酸のエステルはパラベンと呼ばれ、保存料として用いられる。4-ヒドロキシ安息香酸はその原料である。.

新しい!!: ユビキノンと4-ヒドロキシ安息香酸 · 続きを見る »

4-ヒドロキシ安息香酸ポリプレニルトランスフェラーゼ

4-ヒドロキシ安息香酸ポリプレニルトランスフェラーゼはユビキノンの生合成に関わる転移酵素で、次の化学反応を触媒する酵素である。 この酵素の基質はポリプレニル二リン酸と4-ヒドロキシ安息香酸で、生成物は二リン酸と4-ヒドロキシ-3-ポリプレニル安息香酸である。組織名はpolyprenyl-diphosphate:4-hydroxybenzoate polyprenyltransferaseである。この酵素はポリプレニル鎖の鎖長に関する特異性を持たず、様々な鎖長のポリプレニル鎖を4-ヒドロキシ安息香酸に転移する。.

新しい!!: ユビキノンと4-ヒドロキシ安息香酸ポリプレニルトランスフェラーゼ · 続きを見る »

4-アミノ安息香酸

4-アミノ安息香酸(4-アミノあんそくこうさん、4-aminobenzoic acid)は芳香族カルボン酸かつアミンの一種である有機化合物である。パラアミノ安息香酸、PABAとも呼ばれる。葉酸の前駆体として生体内で合成されるほか、日焼け止めとしても用いられる。 PABAはある種の真正細菌に必須の栄養素であり、ビタミンBxと呼ばれたこともあった。しかしヒトにとっては必須栄養素ではないことが明らかとなっており、現在ではビタミンに分類されない。 PABAは真菌の酵素(ジヒドロプテロイン酸シンターゼ)によって葉酸へと変換されるが、ヒトはこの酵素を欠いている。サルファ薬はPABAに構造が類似しており、この酵素を阻害するため真菌選択的に抗菌作用を示す。.

新しい!!: ユビキノンと4-アミノ安息香酸 · 続きを見る »

ここにリダイレクトされます:

CoQ10ユビデカレノンユビキノールビタミンQコエンザイムQコエンザイムQ-10コエンザイムQ10光合成反応中心補酵素Q

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »